微泡
心肌保护
诱导多能干细胞
细胞生物学
外体
医学
干细胞
细胞凋亡
同源盒蛋白纳米
小RNA
癌症研究
缺血
药理学
生物
胚胎干细胞
生物化学
内科学
基因
作者
Yingjie Wang,Lan Zhang,Yongjun Li,Lijuan Chen,Xiaolong Wang,Wei Guo,Xue Zhang,Gangjian Qin,Sheng Hu He,Arthur D. Zimmerman,Yutao Liu,Il‐man Kim,Neal L. Weintraub,Yaoliang Tang
标识
DOI:10.1016/j.ijcard.2015.05.020
摘要
Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferation in ischemic tissues. However, the therapeutic application of iPS cells is limited by their tumorigenic potential. We hypothesized that iPS cells can transmit cytoprotective signals to cardiomyocytes via exosomes/microvesicles.Exosomes/microvesicles secreted from mouse cardiac fibroblast (CF)-derived iPS cells (iPS-exo) were purified from conditioned medium and confirmed by electron micrograph, size distribution and zeta potential by particle tracking analyzer and protein expression of the exosome markers CD63 and Tsg101.We observed that exosomes are at low zeta potential, and easily aggregate. Temperature affects zeta potential (-14 to -15 mV at 23 °C vs -24 mV at 37 °C). The uptake of iPS-exo protects H9C2 cells against H2O2-induced oxidative stress by inhibiting caspase 3/7 activation (P < 0.05, n = 6). Importantly, iPS-exo treatment can protect against myocardial ischemia/reperfusion (MIR) injury via intramyocardial injection into mouse ischemic myocardium before reperfusion. Furthermore, iPS-exo deliver cardioprotective miRNAs, including nanog-regulated miR-21 and HIF-1α-regulated miR-210, to H9C2 cardiomyocytes in vitro.Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR. iPS-exo thus represents novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity and can potentially serve as an "off-the-shelf" therapy to rescue ischemic cardiomyocytes in conditions such as MIR.
科研通智能强力驱动
Strongly Powered by AbleSci AI