Machine Learning in Discovery of New Antivirals and Optimization of Viral Infections Therapy

埃博拉病毒 登革热病毒 登革热 抗病毒药物 人类免疫缺陷病毒(HIV) 抗药性 病毒 人工智能 机器学习 药品 病毒学 医学 计算生物学 计算机科学 重症监护医学 生物 药理学 微生物学
作者
Olga S. Tarasova,Vladimir Poroikov
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:28 (38): 7840-7861 被引量:3
标识
DOI:10.2174/0929867328666210504114351
摘要

Nowadays, computational approaches play an important role in the design of new drug-like compounds and optimization of pharmacotherapeutic treatment of diseases. The emerging growth of viral infections, including those caused by the Human Immunodeficiency Virus (HIV), Ebola virus, recently detected coronavirus, and some others lead to many newly infected people with a high risk of death or severe complications. A huge amount of chemical, biological, clinical data is at the disposal of the researchers. Therefore, there are many opportunities to find the relationships between the particular features of chemical data and the antiviral activity of biologically active compounds based on machine learning approaches. Biological and clinical data can also be used for building models to predict relationships between viral genotype and drug resistance, which might help determine the clinical outcome of treatment. In the current study, we consider machine learning approaches in the antiviral research carried out during the past decade. We overview in detail the application of machine learning methods for the design of new potential antiviral agents and vaccines, drug resistance prediction and analysis of virus-host interactions. Our review also covers the perspectives of using the machine learning approaches for antiviral research including Dengue, Ebola viruses, Influenza A, Human Immunodeficiency Virus, coronaviruses and some others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的樱发布了新的文献求助10
刚刚
danney完成签到,获得积分10
1秒前
2秒前
斯文败类应助二小采纳,获得10
2秒前
3秒前
深情安青应助傲娇的焦采纳,获得10
3秒前
玉yu完成签到 ,获得积分10
3秒前
4秒前
毛豆应助Billy采纳,获得10
5秒前
小嘎完成签到,获得积分10
5秒前
5秒前
QIYU完成签到 ,获得积分10
6秒前
所所应助时差采纳,获得10
7秒前
7秒前
HonglinGao发布了新的文献求助10
8秒前
Jasper应助smj采纳,获得30
8秒前
pluto应助jie采纳,获得10
8秒前
9秒前
9秒前
哔噗哔噗发布了新的文献求助10
10秒前
lee完成签到,获得积分10
10秒前
11秒前
yyna发布了新的文献求助10
11秒前
背后的忆文完成签到,获得积分10
12秒前
0817发布了新的文献求助10
12秒前
GC完成签到,获得积分10
13秒前
烟花应助CZC采纳,获得30
13秒前
橘子屿布丁完成签到,获得积分10
13秒前
Owen应助danney采纳,获得10
14秒前
HJZ完成签到,获得积分10
14秒前
从容芮应助1111采纳,获得30
14秒前
hs完成签到,获得积分10
14秒前
Reybor发布了新的文献求助30
15秒前
XIEMIN发布了新的文献求助10
15秒前
平常无颜完成签到,获得积分10
16秒前
安丽兰发布了新的文献求助30
16秒前
我是老大应助King采纳,获得10
18秒前
18秒前
nhhdhhn完成签到,获得积分10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557