清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Convolutional Neural Network-Based Method for Strength Parameter Prediction of Jointed Rock Mass Using Drilling Logging Data

抗压强度 岩体分类 地质强度指标 不连续性分类 卷积神经网络 岩土工程 岩体评级 钻探 地质学 接头(建筑物) 计算机科学 结构工程 人工智能 工程类 数学 材料科学 复合材料 机械工程 数学分析
作者
Mingming He,Zhiqiang Zhang,Ning Li
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:21 (7) 被引量:30
标识
DOI:10.1061/(asce)gm.1943-5622.0002074
摘要

Field evaluation of the strength properties of jointed rock masses is a challenging task in geotechnical engineering. Typically, laboratory tests using small jointed specimens have difficulty determining the strength parameters of jointed rock masses due to the scale dependence of discontinuities and because the tests are expensive and time-consuming. Fast and continuous estimation of the unconfined compressive strength σcm of a jointed rock mass directly using drilling via a deep convolutional neural network (CNN) is a novel and practical field investigation method. This paper presents a CNN framework that includes (1) obtaining a training dataset; (2) determining the unconfined compressive strength σcm via a rock mass quality rating (RMQR) system; (3) training the CNN model; and (4) validating the results using tunnel engineering calculations. A comparison of the CNN predictive results with the true values suggests that the CNN makes good predictions across a wide range of unconfined compressive strengths σc of intact rock, especially for high RQD values. Due to the joint orientation, the unconfined compressive strength σcm of a jointed rock mass cannot be reliably determined using the σcm/σc ∼ RQD relation. By incorporating the physical variables of RQD and σc, which are known to affect the unconfined compressive strength σcm of a jointed rock mass, into the CNN, the proposed CNN model can provide better predictions than the regular CNN model. All the results predicted by the physics-informed CNN are within the accepted error range of 10%. This method is applied to the excavation of the Huangshan Tunnel in the Hanjiang-to-Weihe River Project of China and is verified as reliable via comparative studies with previous works. Thus, the proposed method represents fast and efficient prediction of the strength of jointed rock masses in rock engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
自然亦凝完成签到,获得积分10
19秒前
Perry完成签到,获得积分0
22秒前
28秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
31秒前
无极微光应助科研通管家采纳,获得20
34秒前
无极微光应助科研通管家采纳,获得20
34秒前
40秒前
52秒前
1分钟前
1分钟前
春宇浩然发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tutu完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
房天川完成签到 ,获得积分10
2分钟前
Yuki完成签到 ,获得积分10
3分钟前
科研通AI2S应助凉宫八月采纳,获得10
3分钟前
3分钟前
凉宫八月发布了新的文献求助10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分0
3分钟前
3分钟前
3分钟前
坚果发布了新的文献求助10
3分钟前
李健应助zuko采纳,获得10
3分钟前
4分钟前
4分钟前
zuko发布了新的文献求助10
4分钟前
顾矜应助坚果采纳,获得10
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
归尘发布了新的文献求助10
4分钟前
MchemG应助无情的琳采纳,获得10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724216
求助须知:如何正确求助?哪些是违规求助? 5285755
关于积分的说明 15299702
捐赠科研通 4872263
什么是DOI,文献DOI怎么找? 2616807
邀请新用户注册赠送积分活动 1566632
关于科研通互助平台的介绍 1523573