Deep Convolutional Neural Network-Based Method for Strength Parameter Prediction of Jointed Rock Mass Using Drilling Logging Data

抗压强度 岩体分类 地质强度指标 不连续性分类 卷积神经网络 岩土工程 岩体评级 钻探 地质学 接头(建筑物) 计算机科学 结构工程 人工智能 工程类 数学 材料科学 复合材料 机械工程 数学分析
作者
Mingming He,Zhiqiang Zhang,Ning Li
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:21 (7) 被引量:30
标识
DOI:10.1061/(asce)gm.1943-5622.0002074
摘要

Field evaluation of the strength properties of jointed rock masses is a challenging task in geotechnical engineering. Typically, laboratory tests using small jointed specimens have difficulty determining the strength parameters of jointed rock masses due to the scale dependence of discontinuities and because the tests are expensive and time-consuming. Fast and continuous estimation of the unconfined compressive strength σcm of a jointed rock mass directly using drilling via a deep convolutional neural network (CNN) is a novel and practical field investigation method. This paper presents a CNN framework that includes (1) obtaining a training dataset; (2) determining the unconfined compressive strength σcm via a rock mass quality rating (RMQR) system; (3) training the CNN model; and (4) validating the results using tunnel engineering calculations. A comparison of the CNN predictive results with the true values suggests that the CNN makes good predictions across a wide range of unconfined compressive strengths σc of intact rock, especially for high RQD values. Due to the joint orientation, the unconfined compressive strength σcm of a jointed rock mass cannot be reliably determined using the σcm/σc ∼ RQD relation. By incorporating the physical variables of RQD and σc, which are known to affect the unconfined compressive strength σcm of a jointed rock mass, into the CNN, the proposed CNN model can provide better predictions than the regular CNN model. All the results predicted by the physics-informed CNN are within the accepted error range of 10%. This method is applied to the excavation of the Huangshan Tunnel in the Hanjiang-to-Weihe River Project of China and is verified as reliable via comparative studies with previous works. Thus, the proposed method represents fast and efficient prediction of the strength of jointed rock masses in rock engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
123完成签到,获得积分10
1秒前
完美梨愁发布了新的文献求助10
2秒前
淡淡博完成签到 ,获得积分10
2秒前
wjxcl发布了新的文献求助10
2秒前
4秒前
sdl发布了新的文献求助10
4秒前
emmm完成签到 ,获得积分10
5秒前
十三发布了新的文献求助10
5秒前
6秒前
6秒前
liangmh完成签到,获得积分10
6秒前
一二不休完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
9秒前
ding应助黑熊安巴尼采纳,获得10
10秒前
Ava应助wjxcl采纳,获得10
10秒前
闪闪如南发布了新的文献求助10
10秒前
深情安青应助一二不休采纳,获得10
11秒前
13秒前
123完成签到,获得积分10
13秒前
不扯先生完成签到,获得积分10
14秒前
柳絮完成签到,获得积分20
15秒前
lll完成签到,获得积分10
15秒前
sdl完成签到,获得积分10
15秒前
Orange应助孟婆的碗采纳,获得10
16秒前
zhangmy1989发布了新的文献求助30
16秒前
16秒前
清秀的不言完成签到 ,获得积分10
16秒前
杂化轨道退役研究员完成签到,获得积分10
16秒前
FashionBoy应助tanglu采纳,获得10
17秒前
18秒前
闪闪如南完成签到,获得积分10
19秒前
wjxcl完成签到,获得积分10
20秒前
20秒前
20秒前
12233完成签到,获得积分10
21秒前
21秒前
洪武完成签到,获得积分20
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048