Deep Convolutional Neural Network-Based Method for Strength Parameter Prediction of Jointed Rock Mass Using Drilling Logging Data

抗压强度 岩体分类 地质强度指标 不连续性分类 卷积神经网络 岩土工程 岩体评级 钻探 地质学 接头(建筑物) 计算机科学 结构工程 人工智能 工程类 数学 材料科学 复合材料 机械工程 数学分析
作者
Mingming He,Zhiqiang Zhang,Ning Li
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:21 (7) 被引量:30
标识
DOI:10.1061/(asce)gm.1943-5622.0002074
摘要

Field evaluation of the strength properties of jointed rock masses is a challenging task in geotechnical engineering. Typically, laboratory tests using small jointed specimens have difficulty determining the strength parameters of jointed rock masses due to the scale dependence of discontinuities and because the tests are expensive and time-consuming. Fast and continuous estimation of the unconfined compressive strength σcm of a jointed rock mass directly using drilling via a deep convolutional neural network (CNN) is a novel and practical field investigation method. This paper presents a CNN framework that includes (1) obtaining a training dataset; (2) determining the unconfined compressive strength σcm via a rock mass quality rating (RMQR) system; (3) training the CNN model; and (4) validating the results using tunnel engineering calculations. A comparison of the CNN predictive results with the true values suggests that the CNN makes good predictions across a wide range of unconfined compressive strengths σc of intact rock, especially for high RQD values. Due to the joint orientation, the unconfined compressive strength σcm of a jointed rock mass cannot be reliably determined using the σcm/σc ∼ RQD relation. By incorporating the physical variables of RQD and σc, which are known to affect the unconfined compressive strength σcm of a jointed rock mass, into the CNN, the proposed CNN model can provide better predictions than the regular CNN model. All the results predicted by the physics-informed CNN are within the accepted error range of 10%. This method is applied to the excavation of the Huangshan Tunnel in the Hanjiang-to-Weihe River Project of China and is verified as reliable via comparative studies with previous works. Thus, the proposed method represents fast and efficient prediction of the strength of jointed rock masses in rock engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gc发布了新的文献求助10
刚刚
hurricane完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助Xiang采纳,获得10
1秒前
SCI完成签到,获得积分10
1秒前
kk发布了新的文献求助10
1秒前
2秒前
饱满秋发布了新的文献求助10
2秒前
iNk应助街角哭泣采纳,获得10
2秒前
2秒前
shinepat发布了新的文献求助10
3秒前
谷飞飞完成签到,获得积分10
3秒前
小张完成签到 ,获得积分10
4秒前
灰太狼养的小灰灰完成签到,获得积分10
4秒前
4秒前
尤文昊完成签到,获得积分10
4秒前
Winfred完成签到,获得积分10
4秒前
Green完成签到,获得积分10
5秒前
CCC完成签到 ,获得积分10
5秒前
5秒前
5秒前
四喜丸子发布了新的文献求助10
5秒前
迷你的豪英完成签到,获得积分10
5秒前
nsk发布了新的文献求助10
6秒前
合理与自信完成签到,获得积分10
6秒前
optical发布了新的文献求助30
6秒前
彭于晏应助漂亮的魂幽采纳,获得10
6秒前
7秒前
碧蓝玉米完成签到,获得积分10
7秒前
uu完成签到,获得积分10
7秒前
所所应助机智二次元采纳,获得10
8秒前
8秒前
懵懂的紫萍完成签到 ,获得积分10
8秒前
寻度完成签到,获得积分10
10秒前
Rishel_Li发布了新的文献求助20
11秒前
科研通AI2S应助月出采纳,获得10
11秒前
寻度发布了新的文献求助10
12秒前
12秒前
shinepat完成签到,获得积分10
12秒前
可爱的函函应助nsk采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168119
求助须知:如何正确求助?哪些是违规求助? 2819492
关于积分的说明 7926815
捐赠科研通 2479378
什么是DOI,文献DOI怎么找? 1320762
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458