Deep Convolutional Neural Network-Based Method for Strength Parameter Prediction of Jointed Rock Mass Using Drilling Logging Data

抗压强度 岩体分类 地质强度指标 不连续性分类 卷积神经网络 岩土工程 岩体评级 钻探 地质学 接头(建筑物) 计算机科学 结构工程 人工智能 工程类 数学 材料科学 复合材料 机械工程 数学分析
作者
Mingming He,Zhiqiang Zhang,Ning Li
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:21 (7) 被引量:30
标识
DOI:10.1061/(asce)gm.1943-5622.0002074
摘要

Field evaluation of the strength properties of jointed rock masses is a challenging task in geotechnical engineering. Typically, laboratory tests using small jointed specimens have difficulty determining the strength parameters of jointed rock masses due to the scale dependence of discontinuities and because the tests are expensive and time-consuming. Fast and continuous estimation of the unconfined compressive strength σcm of a jointed rock mass directly using drilling via a deep convolutional neural network (CNN) is a novel and practical field investigation method. This paper presents a CNN framework that includes (1) obtaining a training dataset; (2) determining the unconfined compressive strength σcm via a rock mass quality rating (RMQR) system; (3) training the CNN model; and (4) validating the results using tunnel engineering calculations. A comparison of the CNN predictive results with the true values suggests that the CNN makes good predictions across a wide range of unconfined compressive strengths σc of intact rock, especially for high RQD values. Due to the joint orientation, the unconfined compressive strength σcm of a jointed rock mass cannot be reliably determined using the σcm/σc ∼ RQD relation. By incorporating the physical variables of RQD and σc, which are known to affect the unconfined compressive strength σcm of a jointed rock mass, into the CNN, the proposed CNN model can provide better predictions than the regular CNN model. All the results predicted by the physics-informed CNN are within the accepted error range of 10%. This method is applied to the excavation of the Huangshan Tunnel in the Hanjiang-to-Weihe River Project of China and is verified as reliable via comparative studies with previous works. Thus, the proposed method represents fast and efficient prediction of the strength of jointed rock masses in rock engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoningmeng完成签到,获得积分10
刚刚
在水一方应助huayi采纳,获得10
刚刚
风味烤羊腿完成签到,获得积分0
刚刚
xiaohong发布了新的文献求助10
刚刚
ccq发布了新的文献求助10
1秒前
1秒前
1秒前
tian发布了新的文献求助10
3秒前
zhangscience发布了新的文献求助10
3秒前
活力半凡完成签到,获得积分10
4秒前
北彧发布了新的文献求助10
5秒前
zsj3787发布了新的文献求助10
5秒前
自觉的傲薇应助hh采纳,获得10
5秒前
乖猫要努力应助lll采纳,获得10
6秒前
科目三应助结实的凉面采纳,获得10
7秒前
8秒前
9秒前
情怀应助北彧采纳,获得10
10秒前
香蕉觅云应助抹茶二锅头采纳,获得10
10秒前
11秒前
李健应助zsj3787采纳,获得10
11秒前
xiaohong完成签到,获得积分10
12秒前
12秒前
U9A发布了新的文献求助10
13秒前
13秒前
今后应助tian采纳,获得10
13秒前
Ava应助2240920060采纳,获得10
13秒前
14秒前
yznfly应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
14秒前
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
沧笙踏歌应助科研通管家采纳,获得10
14秒前
沧笙踏歌应助科研通管家采纳,获得10
14秒前
华仔应助漂流的云朵采纳,获得10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971775
求助须知:如何正确求助?哪些是违规求助? 3516416
关于积分的说明 11182625
捐赠科研通 3251629
什么是DOI,文献DOI怎么找? 1796019
邀请新用户注册赠送积分活动 876216
科研通“疑难数据库(出版商)”最低求助积分说明 805358