已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Ítalo Faria do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (19) 被引量:420
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Jnscal采纳,获得10
1秒前
我是老大应助苻谷丝采纳,获得10
1秒前
2秒前
4秒前
隐形曼青应助工诩采纳,获得10
4秒前
xuexin完成签到,获得积分20
4秒前
美满的中蓝完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助Fishchips采纳,获得10
6秒前
Pengh完成签到,获得积分10
6秒前
苯二氮卓发布了新的文献求助10
7秒前
栗惠发布了新的文献求助10
9秒前
xuexin发布了新的文献求助10
10秒前
华仔应助王王采纳,获得10
11秒前
Miriammmmm发布了新的文献求助30
12秒前
13秒前
14秒前
15秒前
Hoolyshit发布了新的文献求助10
15秒前
英姑应助Arilus采纳,获得10
15秒前
18秒前
儒雅香彤完成签到 ,获得积分10
18秒前
无花果应助ddddd11采纳,获得10
18秒前
121发布了新的文献求助10
19秒前
微熏的羊发布了新的文献求助10
19秒前
华仔应助三口神奇采纳,获得10
19秒前
behre关注了科研通微信公众号
20秒前
jingjing发布了新的文献求助10
21秒前
22秒前
23秒前
张爽发布了新的文献求助10
23秒前
23秒前
瑰慈发布了新的文献求助20
23秒前
愉快的智宸关注了科研通微信公众号
25秒前
Akim应助小机灵采纳,获得10
25秒前
寒冷芝完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
夏末发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479