Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Italo Farìa do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Helia N. Sanchez,Rebecca M. Baron,Dina Ghiassian,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (19) 被引量:228
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
乔谷雪应助哈哈哈哈采纳,获得30
2秒前
猪猪侠发布了新的文献求助10
2秒前
3秒前
4秒前
思源应助ikun采纳,获得10
5秒前
桐桐应助Ma采纳,获得10
5秒前
6秒前
Haliwily完成签到,获得积分10
7秒前
8秒前
年华发布了新的文献求助10
9秒前
xjcy应助season采纳,获得10
9秒前
打打应助Dobronx03采纳,获得10
9秒前
11秒前
池小鱼发布了新的文献求助10
11秒前
甜蜜的曼冬完成签到,获得积分10
11秒前
晓晗完成签到,获得积分10
11秒前
12秒前
谨慎不二完成签到,获得积分10
14秒前
zhangzhang完成签到,获得积分10
14秒前
Nian应助木子青山采纳,获得10
14秒前
欣喜惜筠完成签到,获得积分10
14秒前
zll完成签到,获得积分10
15秒前
科研狒狒发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
17秒前
情怀应助yyds采纳,获得10
19秒前
山河故人完成签到 ,获得积分10
19秒前
19秒前
UPUP0707完成签到,获得积分10
20秒前
jiaxin完成签到,获得积分10
21秒前
JamesPei应助年华采纳,获得10
21秒前
如意从丹发布了新的文献求助10
22秒前
1yyyyyy完成签到 ,获得积分10
23秒前
QSY发布了新的文献求助10
23秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222621
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8174931
捐赠科研通 2538292
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619608