Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Ítalo Faria do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (19) 被引量:420
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的文龙完成签到,获得积分10
刚刚
火火木完成签到,获得积分20
刚刚
小苏发布了新的文献求助10
刚刚
科研通AI6应助李尚洁采纳,获得10
1秒前
Yning发布了新的文献求助10
1秒前
1秒前
英吉利25发布了新的文献求助10
1秒前
夜子落完成签到 ,获得积分10
1秒前
2秒前
3秒前
风趣遥发布了新的文献求助10
3秒前
4秒前
dqq完成签到,获得积分20
4秒前
GGKing完成签到 ,获得积分10
5秒前
5秒前
77完成签到,获得积分10
6秒前
6秒前
有点儿小脾气完成签到,获得积分10
6秒前
小木凳子完成签到,获得积分10
6秒前
6秒前
屈昭阳发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助dqq采纳,获得10
8秒前
8秒前
8秒前
a.........发布了新的文献求助10
9秒前
丘比特应助眼睛大的松鼠采纳,获得10
9秒前
9秒前
尼i发布了新的文献求助30
9秒前
斯文败类应助CL采纳,获得10
10秒前
健壮的剑愁完成签到,获得积分10
10秒前
忧虑的香岚完成签到,获得积分10
10秒前
77发布了新的文献求助20
10秒前
10秒前
无花果应助haha采纳,获得10
10秒前
莫晓岚完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621020
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933223
捐赠科研通 4764227
什么是DOI,文献DOI怎么找? 2551427
邀请新用户注册赠送积分活动 1513956
关于科研通互助平台的介绍 1474733