Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Ítalo Faria do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:118 (19) 被引量:420
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
迷迭香发布了新的文献求助10
5秒前
盼坨发布了新的文献求助20
5秒前
思源应助AJY采纳,获得10
5秒前
RC_Wang发布了新的文献求助10
6秒前
上官若男应助jieni采纳,获得10
7秒前
7秒前
熬大夜完成签到,获得积分10
8秒前
gzl发布了新的文献求助10
8秒前
9秒前
学习完成签到,获得积分10
10秒前
10秒前
清秀皓轩发布了新的文献求助20
11秒前
blue完成签到,获得积分10
12秒前
WXY完成签到,获得积分10
12秒前
HtheJ完成签到,获得积分10
12秒前
希望天下0贩的0应助grzhx采纳,获得10
13秒前
南宫清涟应助无奈的如彤采纳,获得10
13秒前
科研通AI6.1应助小何采纳,获得10
13秒前
14秒前
阿良完成签到,获得积分10
15秒前
zhenggc完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
Jasper应助Apollo采纳,获得10
17秒前
眼睛大毛衣完成签到,获得积分10
17秒前
jsh完成签到,获得积分10
18秒前
18秒前
轨迹应助小rao采纳,获得30
19秒前
量子星尘发布了新的文献求助10
19秒前
心灵美灵波完成签到,获得积分10
19秒前
一二发布了新的文献求助10
19秒前
Yaseen发布了新的文献求助10
20秒前
陈的住气发布了新的文献求助10
20秒前
22秒前
雪烟飞扬发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797