Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Ítalo Faria do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (19) 被引量:420
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
所所应助lv采纳,获得10
2秒前
可爱的函函应助无误采纳,获得10
3秒前
3秒前
桐桐应助甜美的一笑采纳,获得10
5秒前
6秒前
韩涵发布了新的文献求助10
7秒前
李某发布了新的文献求助10
7秒前
9秒前
11秒前
tingting完成签到 ,获得积分10
11秒前
力劈华山完成签到,获得积分10
12秒前
13秒前
曾云璐发布了新的文献求助10
14秒前
14秒前
16秒前
星辰大海应助CC采纳,获得10
17秒前
18秒前
20秒前
pluto应助神之迈出萤火虫采纳,获得10
20秒前
淄博烧烤发布了新的文献求助10
20秒前
23秒前
慕青应助思维隋采纳,获得10
24秒前
大模型应助欢喜的之瑶采纳,获得10
24秒前
yiyi131发布了新的文献求助10
25秒前
25秒前
欣慰外绣发布了新的文献求助10
25秒前
26秒前
tears发布了新的文献求助10
29秒前
哈哈哈发布了新的文献求助10
29秒前
SYLH应助朴实的青雪采纳,获得20
30秒前
焰火青年发布了新的文献求助10
32秒前
32秒前
Dandanhuang发布了新的文献求助10
33秒前
20231125完成签到,获得积分10
33秒前
英俊的汉堡完成签到,获得积分10
34秒前
乐乐宝完成签到,获得积分10
35秒前
guan完成签到,获得积分10
36秒前
淄博烧烤完成签到,获得积分10
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182