Network medicine framework for identifying drug-repurposing opportunities for COVID-19

药物重新定位 重新调整用途 计算机科学 药品 药物发现 机器学习 2019年冠状病毒病(COVID-19) 批准的药物 药物开发 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 精密医学 计算生物学 医学 生物信息学 传染病(医学专业) 疾病 生物 药理学 生态学 病理
作者
Deisy Morselli Gysi,Ítalo Faria do Valle,Marinka Žitnik,Asher Ameli,Xiao Gan,Onur Varol,Susan Dina Ghiassian,J. J. Patten,Robert A. Davey,Joseph Loscalzo,Albert‐László Barabási
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (19) 被引量:420
标识
DOI:10.1073/pnas.2025581118
摘要

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默沛山完成签到 ,获得积分10
刚刚
万能图书馆应助白云垛采纳,获得10
1秒前
南风发布了新的文献求助10
1秒前
深情安青应助质者若渝采纳,获得30
1秒前
xyx完成签到,获得积分10
2秒前
2秒前
3秒前
默默雨竹完成签到,获得积分20
4秒前
5秒前
李健应助楚江南采纳,获得10
6秒前
打打应助骑在电扇上采纳,获得10
7秒前
认真的跳跳糖应助猪猪hero采纳,获得10
7秒前
Hello应助楚珊珊采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
香蕉觅云应助达奚东权采纳,获得10
10秒前
10秒前
QXS完成签到 ,获得积分10
10秒前
聪慧百招发布了新的文献求助10
11秒前
ubiqutin发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
day发布了新的文献求助10
13秒前
咩咩羊发布了新的文献求助10
14秒前
14秒前
烦人精完成签到,获得积分10
14秒前
hilbet完成签到,获得积分10
15秒前
南风发布了新的文献求助10
15秒前
嗯哼应助甜美静白采纳,获得10
16秒前
17秒前
ubiqutin完成签到,获得积分20
17秒前
18秒前
认真的小丸子完成签到,获得积分10
18秒前
DezhiShi发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069273
求助须知:如何正确求助?哪些是违规求助? 4290651
关于积分的说明 13368489
捐赠科研通 4110788
什么是DOI,文献DOI怎么找? 2251058
邀请新用户注册赠送积分活动 1256292
关于科研通互助平台的介绍 1188805