亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction for multi-sensor systems using a novel end-to-end deep-learning method

计算机科学 人工智能 可靠性(半导体) 自编码 深度学习 涡扇发动机 机器学习 数据挖掘 工程类 量子力学 物理 功率(物理) 汽车工程
作者
Yuyu Zhao,Yuxiao Wang
出处
期刊:Measurement [Elsevier BV]
卷期号:182: 109685-109685 被引量:22
标识
DOI:10.1016/j.measurement.2021.109685
摘要

Remaining useful life (RUL) prediction plays a crucial role in ensuring reliability and safety of modern engineering systems. For complicated systems, the indirect manner of the conventional RUL prediction approaches restricts their universality and accuracy. The challenge to realize accurate RUL estimation consists in the direct exploration of the potential relationship between the RUL and the numerous data from multiple monitoring sensors. Motivated by this fact, a novel end-to-end RUL prediction method is proposed based on a deep learning model in this paper. The long short-term memory (LSTM) encoder-decoder is employed as the main frame of the model to deal with multivariate time series data. Then a two-stage attention mechanism is developed to realize adaptive extraction and evaluation of the input features and temporal correlation. On this basis, the RUL prediction is obtained by a multilayer perceptron. The proposed model can selectively focus on the critical information without any prior knowledge, which is of great significance to enhance the RUL prediction accuracy. The effectiveness and superiority of the proposed method is experimentally validated through a turbofan engine dataset and compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的曲奇完成签到 ,获得积分10
3秒前
小马甲应助nsc采纳,获得10
13秒前
Hello应助nsc采纳,获得10
13秒前
万能图书馆应助nsc采纳,获得10
13秒前
华仔应助nsc采纳,获得30
13秒前
CipherSage应助nsc采纳,获得10
13秒前
Jasper应助nsc采纳,获得10
13秒前
在水一方应助nsc采纳,获得10
13秒前
小马甲应助nsc采纳,获得10
13秒前
慕青应助nsc采纳,获得10
13秒前
脑洞疼应助nsc采纳,获得10
13秒前
量子星尘发布了新的文献求助10
31秒前
34秒前
38秒前
孙老师完成签到 ,获得积分10
53秒前
Ava应助nsc采纳,获得10
1分钟前
田様应助nsc采纳,获得10
1分钟前
小蘑菇应助nsc采纳,获得10
1分钟前
Hello应助nsc采纳,获得10
1分钟前
orixero应助nsc采纳,获得10
1分钟前
小二郎应助nsc采纳,获得10
1分钟前
无花果应助nsc采纳,获得10
1分钟前
烟花应助nsc采纳,获得10
1分钟前
JamesPei应助nsc采纳,获得10
1分钟前
科研通AI5应助nsc采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
六六完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264