CT Image Segmentation Method of Liver Tumor Based on Artificial Intelligence Enabled Medical Imaging

肝细胞癌 医学 分割 人工智能 放射科 计算机科学 内科学
作者
Liping Liu,Lin Wang,Dan Xu,Zhang Hong-jie,Ashutosh Sharma,Shailendra Tiwari,Manjit Kaur,Manju Khurana,Mohd Asif Shah
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-8 被引量:20
标识
DOI:10.1155/2021/9919507
摘要

Artificial intelligence (AI) has made various developments in the image segmentation techniques in the field of medical imaging. This article presents a liver tumor CT image segmentation method based on AI medical imaging-based technology. This study proposed an artificial intelligence-based K-means clustering (KMC) algorithm which is further compared with the region growing (RG) method. In this study, 120 patients with liver tumors in the Post Graduate Institute of Medical Education & Research Hospital, Chandigarh, India, were selected as the research objects, and they were classified according to liver function (Child–Pugh), with 58 cases in grade A and 62 cases in grade B. The experimentation indicates that liver tumor showed low density on plain CT scan, moderate enhancement in the arterial phase of the enhanced scan, and low-density filling defect in the involved blood vessel in the portal venous phase (PVP). It was observed that the CT examination is more sensitive to liver metastasis than hepatocellular carcinoma ( P < 0.05 ). The outcomes obtained depict the good deposition effect of lipiodol chemotherapy emulsion (LCTE) in the contrast group with rich blood type accounted for 53.14% and the patients with the poor blood type accounted for 25.73% showed poor deposition effect. The comparison with the state-of-the-art method reveals that the segmentation effect of the KMC algorithm is better than that of the conventional RG method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助XiaoMing采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
shane应助蓝胖子采纳,获得20
5秒前
8秒前
lshl2000完成签到,获得积分10
9秒前
未来余主任完成签到 ,获得积分10
9秒前
10秒前
11秒前
13秒前
15秒前
15秒前
ddcc发布了新的文献求助10
16秒前
科目三应助科研通管家采纳,获得10
17秒前
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
lantian关注了科研通微信公众号
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
星辰大海应助音悦台采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
义气的巨人完成签到,获得积分10
18秒前
友好凡霜给友好凡霜的求助进行了留言
19秒前
重要鑫磊完成签到,获得积分10
19秒前
19秒前
Owen应助大力的迎松采纳,获得10
20秒前
21秒前
XiaoMing发布了新的文献求助10
22秒前
搜集达人应助富富富采纳,获得10
23秒前
TracyGuo发布了新的文献求助10
24秒前
以戈完成签到,获得积分10
25秒前
土豆发布了新的文献求助10
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858