刺
干扰素基因刺激剂
促炎细胞因子
干扰素
胞浆
自身免疫
炎症
生物
免疫学
生物化学
免疫系统
酶
工程类
航空航天工程
作者
Ze Hong,Jiahao Mei,Chenhui Li,Guohui Bai,Munire Maimaiti,Haiyang Hu,Wenying Yu,Li Sun,Lele Zhang,Dan Cheng,Yixian Liao,Senlin Li,Yanping You,Hongbin Sun,Jing Huang,Xing Liu,Judy Lieberman,Chen Wang
标识
DOI:10.1073/pnas.2105465118
摘要
Cytosolic DNA activates cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling, which triggers interferon and inflammatory responses that help defend against microbial infection and cancer. However, aberrant cytosolic self-DNA in Aicardi-Goutière's syndrome and constituently active gain-of-function mutations in STING in STING-associated vasculopathy with onset in infancy (SAVI) patients lead to excessive type I interferons and proinflammatory cytokines, which cause difficult-to-treat and sometimes fatal autoimmune disease. Here, in silico docking identified a potent STING antagonist SN-011 that binds with higher affinity to the cyclic dinucleotide (CDN)-binding pocket of STING than endogenous 2'3'-cGAMP. SN-011 locks STING in an open inactive conformation, which inhibits interferon and inflammatory cytokine induction activated by 2'3'-cGAMP, herpes simplex virus type 1 infection, Trex1 deficiency, overexpression of cGAS-STING, or SAVI STING mutants. In Trex1-/- mice, SN-011 was well tolerated, strongly inhibited hallmarks of inflammation and autoimmunity disease, and prevented death. Thus, a specific STING inhibitor that binds to the STING CDN-binding pocket is a promising lead compound for STING-driven disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI