Transmembrane transport in inorganic colloidal cell-mimics

微型多孔材料 纳米技术 化学 人工细胞 微流控 生物物理学 胶体 材料科学 生物 生物化学 物理化学 有机化学
作者
Zhe Xu,Theodore Hueckel,William T. M. Irvine,Stefano Sacanna
出处
期刊:Nature [Springer Nature]
卷期号:597 (7875): 220-224 被引量:41
标识
DOI:10.1038/s41586-021-03774-y
摘要

A key aspect of living cells is their ability to harvest energy from the environment and use it to pump specific atomic and molecular species in and out of their system—typically against an unfavourable concentration gradient1. Active transport allows cells to store metabolic energy, extract waste and supply organelles with basic building blocks at the submicrometre scale. Unlike living cells, abiotic systems do not have the delicate biochemical machinery that can be specifically activated to precisely control biological matter2–5. Here we report the creation of microcapsules that can be brought out of equilibrium by simple global variables (illumination and pH), to capture, concentrate, store and deliver generic microscopic payloads. Borrowing no materials from biology, our design uses hollow colloids serving as spherical cell-membrane mimics, with a well-defined single micropore. Precisely tunable monodisperse capsules are the result of a synthetic self-inflation mechanism and can be produced in bulk quantities. Inside the hollow unit, a photoswitchable catalyst6 produces a chemical gradient that propagates to the exterior through the membrane’s micropore and pumps target objects into the cell, acting as a phoretic tractor beam7. An entropic energy barrier8,9 brought about by the micropore’s geometry retains the cargo even when the catalyst is switched off. Delivery is accomplished on demand by reversing the sign of the phoretic interaction. Our findings provide a blueprint for developing the next generation of smart materials, autonomous micromachinery and artificial cell-mimics. Hollow colloidal capsules, each with a single micropore, act as artificial cell-like structures that can capture and release payloads such as solid particles or bacteria from the external environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
氼氼发布了新的文献求助10
1秒前
2秒前
2秒前
Shandongdaxiu发布了新的文献求助20
2秒前
YK发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
cindy完成签到,获得积分10
5秒前
faded完成签到,获得积分10
5秒前
5秒前
虚幻春天发布了新的文献求助10
5秒前
地球观光客完成签到,获得积分10
5秒前
酷波er应助wswwsw采纳,获得10
5秒前
6秒前
Joygbb发布了新的文献求助10
6秒前
6秒前
Airhug完成签到 ,获得积分10
6秒前
大道发布了新的文献求助10
7秒前
你是什么小饼干完成签到,获得积分20
7秒前
今后应助wxy采纳,获得10
7秒前
8秒前
9秒前
9秒前
9秒前
梦将军完成签到,获得积分10
10秒前
11秒前
11秒前
kobespecial发布了新的文献求助30
11秒前
wjx发布了新的文献求助10
11秒前
11秒前
愉快问枫应助树袋采纳,获得10
12秒前
蛙蛙完成签到,获得积分10
12秒前
12秒前
小马甲应助orange采纳,获得10
13秒前
14秒前
赘婿应助聪明小黄采纳,获得10
14秒前
谦让的莆完成签到,获得积分20
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259004
求助须知:如何正确求助?哪些是违规求助? 2900665
关于积分的说明 8312000
捐赠科研通 2570002
什么是DOI,文献DOI怎么找? 1396091
科研通“疑难数据库(出版商)”最低求助积分说明 653435
邀请新用户注册赠送积分活动 631364