Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements

材料科学 聚二甲基硅氧烷 悬臂梁 飞秒 纤维 灵敏度(控制系统) 梁(结构) 有限元法 激光器 制作 光电子学 纳米技术 光学 复合材料 电子工程 物理 病理 工程类 替代医学 热力学 医学
作者
Mengqiang Zou,Changrui Liao,Shen Liu,Cong Xiong,Cong Zhao,Jinlai Zhao,Zongsong Gan,Yanping Chen,Kai-Ming Yang,Dan Liu,Ying Wang,Yiping Wang
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:10 (1) 被引量:87
标识
DOI:10.1038/s41377-021-00611-9
摘要

Abstract Micromanipulation and biological, material science, and medical applications often require to control or measure the forces asserted on small objects. Here, we demonstrate for the first time the microprinting of a novel fiber-tip-polymer clamped-beam probe micro-force sensor for the examination of biological samples. The proposed sensor consists of two bases, a clamped beam, and a force-sensing probe, which were developed using a femtosecond-laser-induced two-photon polymerization (TPP) technique. Based on the finite element method (FEM), the static performance of the structure was simulated to provide the basis for the structural design. A miniature all-fiber micro-force sensor of this type exhibited an ultrahigh force sensitivity of 1.51 nm μN −1 , a detection limit of 54.9 nN, and an unambiguous sensor measurement range of ~2.9 mN. The Young’s modulus of polydimethylsiloxane, a butterfly feeler, and human hair were successfully measured with the proposed sensor. To the best of our knowledge, this fiber sensor has the smallest force-detection limit in direct contact mode reported to date, comparable to that of an atomic force microscope (AFM). This approach opens new avenues towards the realization of small-footprint AFMs that could be easily adapted for use in outside specialized laboratories. As such, we believe that this device will be beneficial for high-precision biomedical and material science examination, and the proposed fabrication method provides a new route for the next generation of research on complex fiber-integrated polymer devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
呆呆完成签到,获得积分10
刚刚
左一酱完成签到 ,获得积分10
1秒前
平淡南霜发布了新的文献求助10
1秒前
Sweet关注了科研通微信公众号
1秒前
1秒前
赘婿应助wangfu采纳,获得10
2秒前
2秒前
2秒前
pipge完成签到,获得积分20
2秒前
3秒前
澳澳发布了新的文献求助10
3秒前
4秒前
清脆的映天完成签到,获得积分10
4秒前
yl驳回了sweetbearm应助
4秒前
隐形曼青应助2鱼采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
香蕉觅云应助junzilan采纳,获得10
5秒前
张老涵发布了新的文献求助10
5秒前
灌饼发布了新的文献求助30
5秒前
罗实发布了新的文献求助10
5秒前
张张发布了新的文献求助10
6秒前
木香发布了新的文献求助10
6秒前
朴实以松发布了新的文献求助10
6秒前
在水一方应助神帅酷哥采纳,获得10
6秒前
7秒前
7秒前
pipge发布了新的文献求助30
7秒前
7秒前
万能图书馆应助卡卡采纳,获得10
7秒前
牛虫虫发布了新的文献求助30
8秒前
8秒前
柔弱飞雪完成签到,获得积分10
8秒前
一种信仰完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
YE完成签到,获得积分10
10秒前
2鱼完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794