Deep Symmetric Adaptation Network for Cross-Modality Medical Image Segmentation

计算机科学 人工智能 分割 图像分割 计算机视觉 模式识别(心理学) 杠杆(统计) 翻译(生物学) 编码器 分类器(UML) 尺度空间分割 像素 生物化学 化学 信使核糖核酸 基因 操作系统
作者
Xiaoting Han,Lei Qi,Qian Yu,Ziqi Zhou,Yefeng Zheng,Yinghuan Shi,Yang Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 121-132 被引量:62
标识
DOI:10.1109/tmi.2021.3105046
摘要

Unsupervised domain adaptation (UDA) methods have shown their promising performance in the cross-modality medical image segmentation tasks. These typical methods usually utilize a translation network to transform images from the source domain to target domain or train the pixel-level classifier merely using translated source images and original target images. However, when there exists a large domain shift between source and target domains, we argue that this asymmetric structure, to some extent, could not fully eliminate the domain gap. In this paper, we present a novel deep symmetric architecture of UDA for medical image segmentation, which consists of a segmentation sub-network, and two symmetric source and target domain translation sub-networks. To be specific, based on two translation sub-networks, we introduce a bidirectional alignment scheme via a shared encoder and two private decoders to simultaneously align features 1) from source to target domain and 2) from target to source domain, which is able to effectively mitigate the discrepancy between domains. Furthermore, for the segmentation sub-network, we train a pixel-level classifier using not only original target images and translated source images, but also original source images and translated target images, which could sufficiently leverage the semantic information from the images with different styles. Extensive experiments demonstrate that our method has remarkable advantages compared to the state-of-the-art methods in three segmentation tasks, such as cross-modality cardiac, BraTS, and abdominal multi-organ segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海光发布了新的文献求助10
刚刚
香蕉饼干完成签到,获得积分10
刚刚
羔羊发布了新的文献求助10
1秒前
zmayq发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
学不完的玛卡巴卡卡完成签到 ,获得积分10
2秒前
2秒前
王兴雨完成签到,获得积分10
2秒前
2秒前
2秒前
wonderful发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
努力的淼淼完成签到 ,获得积分10
4秒前
5秒前
洛洛发布了新的文献求助10
5秒前
yzk完成签到,获得积分10
5秒前
善学以致用应助慕容雅旋采纳,获得10
5秒前
2鱼完成签到,获得积分10
6秒前
听白完成签到,获得积分10
6秒前
6秒前
Jinnnnn完成签到,获得积分10
6秒前
cheng发布了新的文献求助10
7秒前
充电宝应助hzw采纳,获得10
7秒前
7秒前
初雪发布了新的文献求助10
7秒前
7秒前
我是你奶发布了新的文献求助10
8秒前
tt发布了新的文献求助10
9秒前
晨昱完成签到 ,获得积分10
9秒前
喜羊羊完成签到,获得积分10
9秒前
逻辑猫完成签到,获得积分10
9秒前
qeqeq发布了新的文献求助10
9秒前
10秒前
zzz发布了新的文献求助10
10秒前
海光完成签到,获得积分10
11秒前
洛洛完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557834
求助须知:如何正确求助?哪些是违规求助? 3132963
关于积分的说明 9399844
捐赠科研通 2832995
什么是DOI,文献DOI怎么找? 1557221
邀请新用户注册赠送积分活动 727141
科研通“疑难数据库(出版商)”最低求助积分说明 716197