凝聚态物理
旋转扭矩传递
各向异性
联轴节(管道)
铁磁性
热稳定性
隧道磁电阻
材料科学
缩放比例
可扩展性
磁各向异性
自旋(空气动力学)
物理
光电子学
拓扑(电路)
磁场
电气工程
磁化
计算机科学
光学
热力学
复合材料
量子力学
数据库
工程类
数学
几何学
作者
B. Jinnai,J. Igarashi,Kyota Watanabe,T. Funatsu,H. Sato,S. Fukami,H. Ohno
标识
DOI:10.1109/iedm13553.2020.9371972
摘要
We show scalability down to 2.3 nm and high performance at single-digit nanometers of shape-anisotropy magnetic tunnel junctions (MTJs) employing a multilayered ferromagnetic structure. We reveal that a free layer with two ferromagnets separated by a MgO layer behaves as a single magnet at small device dimensions owing to magnetostatic coupling in addition to exchange coupling. This nature, in turn, leads to a notable performance increase of the MTJs in the single-digit-nm regime: thermal stability factor Δ of higher than 100 at room temperature; stable switching at temperatures of 150°C or higher; and spin-transfer torque (STT) switching with a dc voltage (intrinsic critical current I C0 of 8.5 μA) and with a 10-ns pulse below 1.0 V. Also, we find that switching efficiency (Δ/I C0 ) increases by a factor of three or more as the size decreases. The results show that the shape-anisotropy MTJ provides a route to high-density and high-performance STT-MRAMs in the era of the ultimate scaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI