Promoting electric vehicle adoption: Who should invest in charging infrastructure?

补贴 业务 电动汽车 政府(语言学) 发展中国家 环境经济学 约束(计算机辅助设计) 稀缺 产业组织 经济 经济增长 微观经济学 市场经济 工程类 机械工程 功率(物理) 语言学 物理 哲学 量子力学
作者
Rajeev Ranjan Kumar,Abhishek Chakraborty,Prasenjit Mandal
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:149: 102295-102295 被引量:98
标识
DOI:10.1016/j.tre.2021.102295
摘要

Electric mobility has emerged as a key initiative for the policymakers and the governments to mitigate the carbon footprint of the transportation sector. However, the adoption of electric vehicles (EVs) is slow, primarily due to the scarcity of adequate charging facilities. The intriguing factor in terms of developing charging infrastructure is related to which entity should invest in developing the same. Herein, we study a vehicle supply chain and formulated four different modes of developing charging infrastructures for EVs when: (a) EV manufacturer invests in setting up the charging infrastructure with a government subsidy to EV consumers, namely the Model M, (b) EV manufacturer invests in setting up the charging infrastructure, namely the Model R (c) Government invests in setting up charging infrastructure and also provides a subsidy to EV consumers, namely the Model MG, and (d) Government invests in setting up the charging infrastructure, namely the Model G. Our findings show that the Model MG and M are equally effective for generating the maximum EV demand and market share, thereby require maximum effort for developing the charging infrastructure. Further, social welfare is also maximum in these two cases, which is counterintuitive because government support is more in the Model MG as compared to the Model M. Hence, under a limited budget constraint, the government can provide direct subsidy to EV consumers and let EV manufacturer invests in charging infrastructure to maximize social welfare. Further, the Model MG and M have a lower overall environmental impact when GV's environmental impact is higher than a threshold. Additionally, we provide multifaceted policy recommendations for the government, along with manufacturer strategic choices under different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助lx采纳,获得20
1秒前
2秒前
zg完成签到,获得积分10
6秒前
6秒前
酷酷问夏完成签到 ,获得积分10
6秒前
我是大葱明完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
iNk应助炙热初晴采纳,获得20
8秒前
10秒前
10秒前
weiteman发布了新的文献求助10
10秒前
yihaiqin完成签到 ,获得积分10
11秒前
可爱的函函应助xixihaha采纳,获得10
11秒前
ling_lz发布了新的文献求助10
12秒前
崇林同学完成签到 ,获得积分10
13秒前
贪玩的访风完成签到 ,获得积分10
13秒前
羔羊完成签到 ,获得积分10
13秒前
14秒前
卢千愁发布了新的文献求助10
19秒前
清澈水眸应助snow采纳,获得60
20秒前
22秒前
Cain应助chemlixy采纳,获得10
23秒前
慢歌完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
Mira发布了新的文献求助10
28秒前
桐桐发布了新的文献求助20
28秒前
鱼儿游啊游完成签到,获得积分10
30秒前
19应助bluesky采纳,获得10
31秒前
优秀的排球完成签到 ,获得积分10
33秒前
科研通AI2S应助顺心含蕾采纳,获得10
33秒前
冬意浓发布了新的文献求助20
33秒前
蛋壳柯发布了新的文献求助10
34秒前
lh完成签到,获得积分10
36秒前
无心的电话完成签到,获得积分20
37秒前
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724