Deep Feature-Review Transmit Network of Contour-Enhanced Road Extraction From Remote Sensing Images

计算机科学 人工智能 特征提取 深度学习 模式识别(心理学) 特征(语言学) 交叉口(航空) 计算机视觉 数据挖掘 工程类 运输工程 语言学 哲学
作者
Zhijin Ge,Yanling Zhao,Jin Wang,Duo Wang,Qi Si
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:21
标识
DOI:10.1109/lgrs.2021.3061764
摘要

The acquisition of road information from remote sensing images is of significant value with regard to intelligent transportation research. This study focuses on enhancing the contour-learning ability to mitigate the phenomenon of fragmented road segments and missing connections in road extraction. A novel Deep Feature-Review (FR) Transmit Network (TransNet) is proposed to review and facilitate the flow of contour features into an encoder network. Meanwhile, multiscale features are linked via a bridge between the encoder and the decoder. Compared with the state-of-the-art models such as fully convolutional network (FCN), SegNet, DeepLabv3, D-LinkNet, spatial consistency-FCN, and generative adversarial network (GAN), the proposed network achieves better overall performance for the Massachusetts Roads data set, with accuracy, precision, recall, and mean intersection-over-union (IoU) scores of 97.48%, 83.72%, 78.13%, and 0.6286%, respectively. For the DeepGlobe Road Extraction data set, the proposed network outperforms FCN, SegNet, DeepLabv3, D-LinkNet, and Deep TransNet, achieving accuracy, precision, recall, and mean IoU scores of 98.70%, 87.30%, 81.15%, and 0.7244%, respectively. Overall, these experiments indicate that the proposed network can effectively address the phenomenon of fragmented road segments and poor connectivity in remote sensing images, indicating its potential for utilization in practical intelligent transportation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lionnn完成签到 ,获得积分10
刚刚
顺利上岸完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
小巫发布了新的文献求助10
4秒前
7秒前
林子发布了新的文献求助10
7秒前
地球三明治完成签到,获得积分20
8秒前
8秒前
9秒前
11秒前
永远完成签到 ,获得积分10
11秒前
Alaska发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助150
12秒前
14秒前
ziyue发布了新的文献求助10
14秒前
14秒前
Owen应助agoodred采纳,获得10
14秒前
科研通AI5应助封蓝血采纳,获得10
15秒前
FULAWEN发布了新的文献求助10
15秒前
无花果应助xxx采纳,获得10
15秒前
NexusExplorer应助今天开心吗采纳,获得10
16秒前
奔流入海发布了新的文献求助10
16秒前
vvvv完成签到,获得积分10
17秒前
17秒前
YY发布了新的文献求助10
17秒前
mimi发布了新的文献求助10
19秒前
儒雅龙完成签到 ,获得积分10
20秒前
20秒前
linlin发布了新的文献求助10
22秒前
23秒前
YY完成签到,获得积分10
23秒前
李健应助努力努力再努力采纳,获得10
23秒前
脑袋瓜完成签到,获得积分20
23秒前
天真的白凡完成签到,获得积分10
24秒前
mengran关注了科研通微信公众号
25秒前
田様应助斯文一笑采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075983
求助须知:如何正确求助?哪些是违规求助? 4295640
关于积分的说明 13385047
捐赠科研通 4117410
什么是DOI,文献DOI怎么找? 2254869
邀请新用户注册赠送积分活动 1259467
关于科研通互助平台的介绍 1192218