亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review

医学 机器学习 心肌梗塞 心脏病学 重症监护医学 内科学 计算机科学
作者
Sung Min Cho,Peter C. Austin,Heather J. Ross,Husam Abdel‐Qadir,Davide Chicco,George Tomlinson,Cameron Taheri,Farid Foroutan,Patrick R. Lawler,Filio Billia,Anthony O. Gramolini,Slava Epelman,Bo Wang,Douglas S. Lee
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:37 (8): 1207-1214 被引量:43
标识
DOI:10.1016/j.cjca.2021.02.020
摘要

Machine learning (ML) methods are increasingly used in addition to conventional statistical modelling (CSM) for predicting readmission and mortality in patients with myocardial infarction (MI). However, the two approaches have not been systematically compared across studies of prognosis in patients with MI.Following PRISMA guidelines, we systematically reviewed the literature via Medline, EPub, Cochrane Central, Embase, Inspec, ACM Digital Library, and Web of Science. Eligible studies included primary research articles published from January 2000 to March 2020, comparing ML and CSM for prognostication after MI.Of 7,348 articles, 112 underwent full-text review, with the final set composed of 24 articles representing 374,365 patients. ML methods included artificial neural networks (n = 12 studies), random forests (n = 11), decision trees (n = 8), support vector machines (n = 8), and Bayesian techniques (n = 7). CSM included logistic regression (n = 19 studies), existing CSM-derived risk scores (n = 12), and Cox regression (n = 2). Thirteen of 19 studies examining mortality reported higher C-indexes with the use of ML compared with CSM. One study examined readmissions at 2 different time points, with C-indexes that were higher for ML than CSM. Across all studies, a total of 29 comparisons were performed, but the majority (n = 26, 90%) found small (< 0.05) absolute differences in the C-index between ML and CSM. With the use of a modified CHARMS checklist, sources of bias were identifiable in the majority of studies, and only 2 were externally validated.Although ML algorithms tended to have higher C-indexes than CSM for predicting death or readmission after MI, these studies exhibited threats to internal validity and were often unvalidated. Further comparisons are needed, with adherence to clinical quality standards for prognosis research. (Trial registration: PROSPERO CRD42019134896).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
fengfenghao完成签到,获得积分10
34秒前
燕晓啸完成签到 ,获得积分0
45秒前
今后应助羫孔采纳,获得10
1分钟前
1分钟前
1分钟前
羫孔发布了新的文献求助10
1分钟前
赘婿应助羫孔采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CC完成签到,获得积分10
2分钟前
DONG完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
一_发布了新的文献求助10
4分钟前
CipherSage应助一_采纳,获得10
5分钟前
5分钟前
Orange应助神说要有光采纳,获得10
5分钟前
一_发布了新的文献求助10
5分钟前
古炮完成签到 ,获得积分10
5分钟前
5分钟前
贾南烟完成签到,获得积分10
6分钟前
贾南烟发布了新的文献求助10
6分钟前
6分钟前
吕佳完成签到 ,获得积分10
6分钟前
星宫金魁完成签到 ,获得积分10
7分钟前
星宫韩立完成签到 ,获得积分10
7分钟前
HS完成签到,获得积分10
7分钟前
7分钟前
NexusExplorer应助体贴花卷采纳,获得10
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
chiazy完成签到 ,获得积分10
8分钟前
8分钟前
希望天下0贩的0应助羫孔采纳,获得10
8分钟前
fighting完成签到 ,获得积分10
9分钟前
9分钟前
羫孔发布了新的文献求助10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314409
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622409
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881