CPSO-Based Parameter-Identification Method for the Fractional-Order Modeling of Lithium-Ion Batteries

粒子群优化 数学优化 算法 计算机科学 计算 采样(信号处理) 分数阶微积分 鉴定(生物学) 进化计算 数学 应用数学 探测器 植物 电信 生物
作者
Zhihao Yu,Ruituo Huai,Hongyu Li
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 11109-11123 被引量:25
标识
DOI:10.1109/tpel.2021.3073810
摘要

For battery equivalent circuit model parameter identification, the fractional-order modeling and the bionic algorithm are two excellent techniques. The former can describe the impedance characteristics of batteries accurately, while the latter has natural advantages in solving some nonlinear problems. However, the high computational cost limits their application. In this article, a parameter-identification method for a battery fractional-order model based on the coevolutionary particle swarm optimization (CPSO) is proposed. In this algorithm, a large number of optimization calculations are dispersed between the adjacent sampling times in the form of evolutionary steps by CPSO, so the algorithm can run in real time with the sampling process. In addition, the simplified fractional approximation further reduces the computational cost. By conducting tests under various algorithm conditions, we evaluate the main factors affecting the algorithm performance in detail. Our results show that compared with the integer-order model, the fractional-order model can track the optimal value more effectively in a wider optimization space, CPSO can track the time-varying battery parameters in real time by continuous evolution, and computational costs can be effectively reduced by using a fixed-order fractional-order model and appropriately compressing the length of the historical data required for fractional-order computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的马里奥完成签到,获得积分10
1秒前
结实大白完成签到,获得积分10
2秒前
互助遵法尚德应助执着采纳,获得10
2秒前
没有名字完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
guilin应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得10
4秒前
百无禁忌应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
丁丁丁应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
whatever应助科研通管家采纳,获得20
5秒前
打打应助科研通管家采纳,获得10
5秒前
梓泽丘墟应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
丁丁丁应助科研通管家采纳,获得20
5秒前
敬老院N号应助科研通管家采纳,获得50
5秒前
whatever应助科研通管家采纳,获得20
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
wllllll发布了新的文献求助20
6秒前
单身的紫烟完成签到,获得积分10
6秒前
柔弱的兔子完成签到,获得积分10
9秒前
小马哥完成签到,获得积分10
10秒前
赘婿应助jacob258采纳,获得10
10秒前
超帅柚子完成签到 ,获得积分10
11秒前
研友_n0kjPL完成签到,获得积分0
11秒前
12秒前
13秒前
互助遵法尚德应助Gyrfalcon采纳,获得10
13秒前
皮卡噼里啪啦完成签到 ,获得积分10
13秒前
15秒前
酷波er应助阿布采纳,获得10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175