CPSO-Based Parameter-Identification Method for the Fractional-Order Modeling of Lithium-Ion Batteries

粒子群优化 数学优化 算法 计算机科学 计算 采样(信号处理) 分数阶微积分 鉴定(生物学) 进化计算 数学 应用数学 探测器 植物 电信 生物
作者
Zhihao Yu,Ruituo Huai,Hongyu Li
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 11109-11123 被引量:25
标识
DOI:10.1109/tpel.2021.3073810
摘要

For battery equivalent circuit model parameter identification, the fractional-order modeling and the bionic algorithm are two excellent techniques. The former can describe the impedance characteristics of batteries accurately, while the latter has natural advantages in solving some nonlinear problems. However, the high computational cost limits their application. In this article, a parameter-identification method for a battery fractional-order model based on the coevolutionary particle swarm optimization (CPSO) is proposed. In this algorithm, a large number of optimization calculations are dispersed between the adjacent sampling times in the form of evolutionary steps by CPSO, so the algorithm can run in real time with the sampling process. In addition, the simplified fractional approximation further reduces the computational cost. By conducting tests under various algorithm conditions, we evaluate the main factors affecting the algorithm performance in detail. Our results show that compared with the integer-order model, the fractional-order model can track the optimal value more effectively in a wider optimization space, CPSO can track the time-varying battery parameters in real time by continuous evolution, and computational costs can be effectively reduced by using a fixed-order fractional-order model and appropriately compressing the length of the historical data required for fractional-order computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五五我发布了新的文献求助10
刚刚
natuki完成签到,获得积分10
刚刚
刚刚
VLH完成签到,获得积分10
刚刚
1秒前
现代的代梅完成签到 ,获得积分10
1秒前
琉璃完成签到,获得积分10
1秒前
1秒前
时鹏飞完成签到 ,获得积分0
1秒前
fat完成签到,获得积分10
1秒前
典雅的静发布了新的文献求助10
2秒前
2秒前
[刘小婷]完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
可靠之玉完成签到,获得积分10
3秒前
睡到人间煮饭时完成签到,获得积分10
4秒前
纳纳椰完成签到,获得积分10
4秒前
4秒前
zzz发布了新的文献求助10
5秒前
6秒前
张冰倩发布了新的文献求助30
6秒前
zzer完成签到,获得积分10
6秒前
6秒前
6秒前
szmsnail完成签到,获得积分10
7秒前
852应助Joannice采纳,获得10
7秒前
IMkily完成签到,获得积分10
7秒前
菠萝炒饭完成签到,获得积分10
7秒前
优秀的念露完成签到,获得积分10
7秒前
哈哈完成签到,获得积分10
7秒前
冷漠的布丁完成签到,获得积分10
8秒前
Yin完成签到,获得积分10
8秒前
8秒前
8秒前
面包牛奶会有的完成签到,获得积分10
8秒前
8秒前
三三四完成签到,获得积分10
9秒前
yulong完成签到,获得积分10
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478