亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans

排泄 泌尿系统 尿 动物研究 药代动力学 动物种类 药品 人类动物 动物模型 生理学 内分泌学 内科学 化学 医学 药理学 生物 牲畜 动物 生态学
作者
Nadia O. Bamfo,Chelsea M. Hosey,L Z Benet,Connie M. Remsberg
出处
期刊:Pharmaceutical Research [Springer Nature]
卷期号:38 (7): 1139-1156 被引量:5
标识
DOI:10.1007/s11095-021-03076-y
摘要

A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans.A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds.Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%.Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
皮老师完成签到,获得积分10
36秒前
孟寐以求完成签到 ,获得积分10
36秒前
47秒前
Who发布了新的文献求助10
53秒前
热情依白应助科研通管家采纳,获得10
57秒前
1分钟前
eason完成签到,获得积分10
1分钟前
Cupid发布了新的文献求助30
1分钟前
theo完成签到 ,获得积分10
1分钟前
andrele发布了新的文献求助10
2分钟前
糖伯虎完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
JeremyChi发布了新的文献求助10
3分钟前
英俊的铭应助Who采纳,获得10
3分钟前
半斤应助JeremyChi采纳,获得10
3分钟前
逻辑猫发布了新的文献求助20
3分钟前
是述不是沭完成签到,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
Who发布了新的文献求助10
5分钟前
大个应助Who采纳,获得10
5分钟前
LGA1700完成签到,获得积分10
5分钟前
6分钟前
Mr-Li-Happy发布了新的文献求助10
6分钟前
Mr-Li-Happy完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
迷人幻波发布了新的文献求助10
7分钟前
Who发布了新的文献求助10
7分钟前
7分钟前
潮人完成签到 ,获得积分10
8分钟前
8分钟前
康康舞曲完成签到 ,获得积分10
8分钟前
靳言发布了新的文献求助10
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307419
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500259
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461