已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoding imagined speech from EEG signals using hybrid-scale spatial-temporal dilated convolution network

计算机科学 解码方法 卷积(计算机科学) 脑电图 判别式 人工智能 模式识别(心理学) 语音识别 特征(语言学) 代表(政治) 人工神经网络 算法 心理学 哲学 精神科 法学 政治 语言学 政治学
作者
Fu Li,Weibing Chao,Yang Li,Boxun Fu,Youshuo Ji,Hao Wu,Guangming Shi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460c4-0460c4 被引量:14
标识
DOI:10.1088/1741-2552/ac13c0
摘要

Objective. Directly decoding imagined speech from electroencephalogram (EEG) signals has attracted much interest in brain–computer interface applications, because it provides a natural and intuitive communication method for locked-in patients. Several methods have been applied to imagined speech decoding, but how to construct spatial-temporal dependencies and capture long-range contextual cues in EEG signals to better decode imagined speech should be considered. Approach. In this study, we propose a novel model called hybrid-scale spatial-temporal dilated convolution network (HS-STDCN) for EEG-based imagined speech recognition. HS-STDCN integrates feature learning from temporal and spatial information into a unified end-to-end model. To characterize the temporal dependencies of the EEG sequences, we adopted a hybrid-scale temporal convolution layer to capture temporal information at multiple levels. A depthwise spatial convolution layer was then designed to construct intrinsic spatial relationships of EEG electrodes, which can produce a spatial-temporal representation of the input EEG data. Based on the spatial-temporal representation, dilated convolution layers were further employed to learn long-range discriminative features for the final classification. Main results. To evaluate the proposed method, we compared the HS-STDCN with other existing methods on our collected dataset. The HS-STDCN achieved an averaged classification accuracy of 54.31% for decoding eight imagined words, which is significantly better than other methods at a significance level of 0.05. Significance. The proposed HS-STDCN model provided an effective approach to make use of both the temporal and spatial dependencies of the input EEG signals for imagined speech recognition. We also visualized the word semantic differences to analyze the impact of word semantics on imagined speech recognition, investigated the important regions in the decoding process, and explored the use of fewer electrodes to achieve comparable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄钰发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
伴你笑完成签到,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
退学炒股发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
5秒前
研友_VZG7GZ应助阿飞采纳,获得10
7秒前
9秒前
大个应助伴你笑采纳,获得10
9秒前
小昕思完成签到 ,获得积分10
9秒前
容止发布了新的文献求助10
15秒前
18秒前
18秒前
20秒前
15966014069发布了新的文献求助10
21秒前
汉堡包应助Captain采纳,获得10
23秒前
轮胎配方完成签到,获得积分10
23秒前
李爱国应助薛薛@采纳,获得30
26秒前
guard发布了新的文献求助10
26秒前
31秒前
一介尘埃完成签到 ,获得积分10
33秒前
33秒前
John完成签到 ,获得积分10
34秒前
bkagyin应助guard采纳,获得10
35秒前
可萨利亚应助Agreenhand采纳,获得10
35秒前
lalala发布了新的文献求助10
37秒前
37秒前
qunqingqing完成签到,获得积分10
37秒前
天元神尊完成签到 ,获得积分10
38秒前
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801528
关于积分的说明 7845329
捐赠科研通 2459096
什么是DOI,文献DOI怎么找? 1308989
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727