Decoding imagined speech from EEG signals using hybrid-scale spatial-temporal dilated convolution network

计算机科学 解码方法 卷积(计算机科学) 脑电图 判别式 人工智能 模式识别(心理学) 语音识别 特征(语言学) 代表(政治) 人工神经网络 算法 心理学 哲学 精神科 法学 政治 语言学 政治学
作者
Fu Li,Weibing Chao,Yang Li,Boxun Fu,Youshuo Ji,Hao Wu,Guangming Shi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460c4-0460c4 被引量:14
标识
DOI:10.1088/1741-2552/ac13c0
摘要

Objective. Directly decoding imagined speech from electroencephalogram (EEG) signals has attracted much interest in brain–computer interface applications, because it provides a natural and intuitive communication method for locked-in patients. Several methods have been applied to imagined speech decoding, but how to construct spatial-temporal dependencies and capture long-range contextual cues in EEG signals to better decode imagined speech should be considered. Approach. In this study, we propose a novel model called hybrid-scale spatial-temporal dilated convolution network (HS-STDCN) for EEG-based imagined speech recognition. HS-STDCN integrates feature learning from temporal and spatial information into a unified end-to-end model. To characterize the temporal dependencies of the EEG sequences, we adopted a hybrid-scale temporal convolution layer to capture temporal information at multiple levels. A depthwise spatial convolution layer was then designed to construct intrinsic spatial relationships of EEG electrodes, which can produce a spatial-temporal representation of the input EEG data. Based on the spatial-temporal representation, dilated convolution layers were further employed to learn long-range discriminative features for the final classification. Main results. To evaluate the proposed method, we compared the HS-STDCN with other existing methods on our collected dataset. The HS-STDCN achieved an averaged classification accuracy of 54.31% for decoding eight imagined words, which is significantly better than other methods at a significance level of 0.05. Significance. The proposed HS-STDCN model provided an effective approach to make use of both the temporal and spatial dependencies of the input EEG signals for imagined speech recognition. We also visualized the word semantic differences to analyze the impact of word semantics on imagined speech recognition, investigated the important regions in the decoding process, and explored the use of fewer electrodes to achieve comparable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
devin578632发布了新的文献求助10
1秒前
DimerV发布了新的文献求助10
2秒前
段启瑞发布了新的文献求助10
3秒前
943034197完成签到,获得积分10
3秒前
3秒前
令狐擎宇发布了新的文献求助10
3秒前
H123关注了科研通微信公众号
4秒前
5秒前
勤劳怜寒完成签到,获得积分10
6秒前
8秒前
婧婧发布了新的文献求助10
9秒前
monere发布了新的文献求助30
9秒前
Qing完成签到,获得积分10
9秒前
朴实以丹发布了新的文献求助30
10秒前
11秒前
11秒前
脑洞疼应助SSS木南采纳,获得10
11秒前
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
Owen应助科研通管家采纳,获得30
13秒前
LEMONS应助科研通管家采纳,获得10
13秒前
荣耀发布了新的文献求助10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得30
13秒前
13秒前
yx_cheng应助科研通管家采纳,获得20
13秒前
13秒前
13秒前
13秒前
iNk应助科研通管家采纳,获得20
13秒前
14秒前
iNk应助科研通管家采纳,获得20
14秒前
小吴同志发布了新的文献求助10
14秒前
15秒前
柯一一应助张立人采纳,获得10
15秒前
15秒前
希望天下0贩的0应助ZL采纳,获得10
16秒前
18秒前
李健的粉丝团团长应助WZJ采纳,获得10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517