磺酸
催化作用
皮克林乳液
选择性
化学
乳状液
环氧化物
氧化剂
阳离子聚合
二醇
臭氧分解
有机化学
高分子化学
化学工程
工程类
作者
Xiangjun Quan,Yange Li,Huachang Gu,Chenyuan Hu,Yiming Zhang,Yao Li,Weiming Gao,Cuiping Li
标识
DOI:10.1016/j.jcis.2021.08.009
摘要
Sulfonated polydivinylbenzene bamboo-like nanotube (SPDVB) with effective olefins oxidation activity is prepared by combining cationic polymerization and sulfonation. By merely adjusting sulfonation time, SPDVB with different sulfonic acid group (-SO3H) contents is achieved. SPDVB is used as both a solid emulsifier and catalyst to fabricate Pickering emulsion interface catalytic system for oxidizing olefins with 30% H2O2 acting as oxidant/water phase and olefins acting as reactants/oil phase. It is shown that Pickering emulsion interface catalytic system stabilized by SPDVB exhibits enhanced olefins oxidation efficiency than the conventional ones. At the optimum catalyst and reaction condition, the conversion of olefins by Pickering emulsion interface catalytic system stabilized by SPDVB for cyclohexene, 1-methylcyclohexene, cyclooctene, 2,3-dimethyl-2-butene oxidation is higher than 90.00% and the corresponding 1,2-diol selectivity exceeds 93.00% except the selectivity to 1-methyl-1,2-cyclohexanediol. The catalytic system also exhibits excellent cycling performance (>95.00% olefins conversion and >89.00% 1,2-diol selectivity for cyclohexene/2,3-dimethyl-2-butene oxidation after four cycles). A possible mechanism for oxidation of olefins to 1,2-diol by SPDVB stabilized Pickering emulsion is proposed: the high catalytic interface area between sulfonic acid group and H2O2 in water phase enhances the sulfonic acid group of SPDVB to convert into peroxysulfonic acid (catalytic activity centre) firstly; then the formed peroxysulfonic acid attacks the double bond of olefins to form epoxide intermediates, which will be hydrolyzed to 1,2-diol.
科研通智能强力驱动
Strongly Powered by AbleSci AI