The application of Raman spectroscopy for monitoring product quality attributes in perfusion cell culture

过程分析技术 拉曼光谱 关键质量属性 化学 色谱法 质量(理念) 工艺工程 生物系统 计算机科学 在制品 工程类 生物 运营管理 哲学 物理化学 认识论 粒径 物理 光学
作者
Zimin Liu,Zhi‐Jun Zhang,Yongjun Qin,Gong Chen,Jun Hu,Qing Wang,Weichang Zhou
出处
期刊:Biochemical Engineering Journal [Elsevier]
卷期号:173: 108064-108064 被引量:30
标识
DOI:10.1016/j.bej.2021.108064
摘要

In-situ Raman spectroscopy provides enhanced capabilities to monitor and control the mammalian cell culture process in real-time, which conforms to the concepts Process Analytical Technology (PAT) and Quality by Design (QbD) raised by U.S. Food and Drug Administration (FDA), and help us to overcome the challenges encountered in the Pharmaceutical R&D. Product quality control was addressed in FDA’s guidance to encourage continuous manufacturing, few work was done to maintain a steady output of drug product in the continuous mammalian cell culture process with the aid of Raman spectroscopy. Here, the state-of-the-art intensified perfusion cell culture - Raman integrated system was set up where product quality attributes on-line monitoring was archived, which could enhance our product quality attributes (PQA) control capabilities as well as ensuring product quality stability in the cell culture process. In this study, an intensified perfusion cell culture system integrated with real-time Raman analyzer was built-up at 3 L bench-top scale for product quality attributes monitoring. Real-time Raman spectrums were correlated with the PQA data of one-step Protein A purified sample after the alternating tangential flow (ATF) column via partial least square (PLS) modeling, results showed that the Raman spectrum could reflect the PQA changes as a function of elapsed time. Thus the real-time monitoring of 3 representative analytical items for cell culture, i.e., Non-reduced Microchip CE-SDS (SDS_Caliper-NR), size-exclusion chromatography (SEC) and N-linked glycan liquid chromatography (N-glycan LC) were evaluated through Raman analyzer. For different analytical items, around 6∼8 kinds of PLS models with different pre-processing methods were evaluated, which considered the effects of Raman shift range, spectrum pre-processing (1st order derivate or 2nd order derivate), utilization of variable importance in projection (V.I.P) on Raman shift range on the model performance. Then the trained models were tested in another intensified perfusion batch with changed process. As for SDS_Caliper-NR main peak, SEC monomer, high molecule weight (HMW) species, Mannose 5 (Man5) percentage, our optimized models could predict these items accurately, with relatively low root mean square error of cross validation (RMSECV) of 0.37 %, 0.44 %, 0.24 % and 0.51 %, respectively. Adapting these models in another 3 L intensified perfusion culture bioreactor with different processes, these models still have predictability, yielded root mean square error of prediction (RMSEP) of 1.88 %, 1.74 %, 0.90 %, 2.79 %, suggesting that Raman spectrums could capture the PQA profiling trends and these models were quite robust against some process changes like pH strategy, perfusion rate, additional feeding. We also found that the 1st order derivate with standard normal variate transformation (SNV), Raman wavenumber from 800 to 1800 cm−1 and V.I.P > 0.8 usually obtained the best performance in the training set, suggesting a golden point for Raman PQA monitoring of cell culture process. This work demonstrated that real-time Raman spectroscopy is an effective PAT tool for on-line product quality attributes monitoring in the cell culture process, especially for continuous perfusion cell culture, allowing us to explore the possibility of PQA on-line tuning in the continuous manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
5秒前
方方发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
高赛文发布了新的文献求助10
7秒前
7秒前
lmm完成签到 ,获得积分10
7秒前
8秒前
在水一方应助cheng采纳,获得10
9秒前
stanfordlee发布了新的文献求助10
10秒前
FashionBoy应助温柔白玉采纳,获得10
11秒前
11秒前
一一一应助YueYue采纳,获得10
11秒前
邓佳鑫Alan应助YueYue采纳,获得10
11秒前
cy完成签到,获得积分10
11秒前
动人的易烟完成签到,获得积分20
12秒前
科研通AI6应助雪白绿旋采纳,获得10
12秒前
昵称发布了新的文献求助10
13秒前
wxt发布了新的文献求助10
13秒前
英吉利25发布了新的文献求助30
15秒前
鱼雷完成签到,获得积分10
16秒前
xjtuwang0618完成签到,获得积分10
18秒前
18秒前
19秒前
蓓蓓完成签到,获得积分10
20秒前
科研通AI6应助多情的忆之采纳,获得30
21秒前
Akim应助LaTeXer采纳,获得50
22秒前
阿黄完成签到,获得积分10
22秒前
22秒前
琳io发布了新的文献求助10
22秒前
方方完成签到,获得积分10
24秒前
Tong123发布了新的文献求助10
24秒前
唐唯一发布了新的文献求助10
24秒前
25秒前
26秒前
大模型应助方方采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989