拉曼光谱
光学
薄膜
化学
等离子体子
波导管
光电子学
表面等离子体激元
信号(编程语言)
近场和远场
表面等离子体子
材料科学
纳米技术
物理
计算机科学
程序设计语言
作者
Kaifeng Zhang,Yi‐Fan Bao,Maofeng Cao,Shin‐ichi Taniguchi,Masahiro Watanabe,T. Kambayashi,Toshihiro Okamoto,Masanobu Haraguchi,Xiang Wang,Kei Kobayashi,Hirofumi Yamada,Bin Ren,Takehiro Tachizaki
标识
DOI:10.1021/acs.analchem.1c00806
摘要
Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.
科研通智能强力驱动
Strongly Powered by AbleSci AI