Design and development of an e-nose system for the diagnosis of pulmonary diseases

慢性阻塞性肺病 肺癌 电子鼻 肺病 医学 鼻子 气体分析呼吸 支持向量机 传感器阵列 呼吸系统 病理 生物医学工程 内科学 外科 计算机科学 人工智能 机器学习 解剖
作者
V A Binson,M. Subramoniam
出处
期刊:Acta of Bioengineering and Biomechanics [Politechnika Wroclawska Oficyna Wydawnicza]
卷期号:23 (1) 被引量:18
标识
DOI:10.37190/abb-01737-2020-03
摘要

Purpose: The aim of this paper was to discuss the design and development of an innovative e-nose system which can detect respiratory ailments by detecting the Volatile Organic Compounds (VOCs) in the expelled breath. In addition to nitrogen, oxygen, and carbon dioxide, the expelled breath contains several VOCs, some of which are indicative of lung-related conditions and can differentiate healthy controls from people affected with pulmonary diseases. Methods: This work detailed the sensor selection process, the assembly of the sensors into a sensor array, the design and implementation of the circuit, sampling methods, and an algorithm for data analysis. The clinical feasibility of the system was checked in 27 lung cancer patients, 22 chronic obstructive pulmonary disease (COPD) patients, and 39 healthy controls including smokers and non-smokers. Results: The classification model developed using the support vector machine (SVM) was able to provide accuracy, sensitivity, and specificity of 88.79, 89.58 and 88.23%, respectively for lung cancer, and 78.70, 72.50 and 82.35%, respectively for COPD. Conclusions: The sensor array system developed with TGS gas sensors was non-invasive, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different, hence, the e-nose system can be used as a potential diagnostic device for patients with lung diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十六日呀发布了新的文献求助10
1秒前
英俊的铭应助骆怀薇采纳,获得10
1秒前
1秒前
等待凡桃发布了新的文献求助10
1秒前
缝纫工发布了新的文献求助10
2秒前
小林是我完成签到,获得积分20
2秒前
3秒前
小子关注了科研通微信公众号
3秒前
orixero应助怠慢采纳,获得10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
FL完成签到,获得积分10
4秒前
4秒前
zhang完成签到 ,获得积分10
4秒前
4秒前
yiyao发布了新的文献求助20
5秒前
今后应助111采纳,获得10
6秒前
爆米花应助月洱2024采纳,获得10
6秒前
orixero应助李欣洳采纳,获得10
7秒前
高乾飞完成签到,获得积分10
7秒前
7秒前
modujuan完成签到,获得积分10
7秒前
科研汪完成签到,获得积分10
8秒前
闫晓涵发布了新的文献求助10
8秒前
Maestro_S发布了新的文献求助10
8秒前
张欣宇发布了新的文献求助10
9秒前
10秒前
10秒前
ding应助木木采纳,获得10
10秒前
10秒前
11秒前
spc68应助读书的时候采纳,获得10
11秒前
月夕花晨发布了新的文献求助10
11秒前
陈pc完成签到,获得积分10
11秒前
11秒前
喜悦冰烟发布了新的文献求助10
11秒前
严珍珍完成签到 ,获得积分10
12秒前
楠楠完成签到,获得积分10
12秒前
changaipei完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450