亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design and development of an e-nose system for the diagnosis of pulmonary diseases

慢性阻塞性肺病 肺癌 电子鼻 肺病 医学 鼻子 气体分析呼吸 支持向量机 传感器阵列 呼吸系统 病理 生物医学工程 内科学 外科 计算机科学 人工智能 机器学习 解剖
作者
V A Binson,M. Subramoniam
出处
期刊:Acta of Bioengineering and Biomechanics [Politechnika Wroclawska Oficyna Wydawnicza]
卷期号:23 (1) 被引量:18
标识
DOI:10.37190/abb-01737-2020-03
摘要

Purpose: The aim of this paper was to discuss the design and development of an innovative e-nose system which can detect respiratory ailments by detecting the Volatile Organic Compounds (VOCs) in the expelled breath. In addition to nitrogen, oxygen, and carbon dioxide, the expelled breath contains several VOCs, some of which are indicative of lung-related conditions and can differentiate healthy controls from people affected with pulmonary diseases. Methods: This work detailed the sensor selection process, the assembly of the sensors into a sensor array, the design and implementation of the circuit, sampling methods, and an algorithm for data analysis. The clinical feasibility of the system was checked in 27 lung cancer patients, 22 chronic obstructive pulmonary disease (COPD) patients, and 39 healthy controls including smokers and non-smokers. Results: The classification model developed using the support vector machine (SVM) was able to provide accuracy, sensitivity, and specificity of 88.79, 89.58 and 88.23%, respectively for lung cancer, and 78.70, 72.50 and 82.35%, respectively for COPD. Conclusions: The sensor array system developed with TGS gas sensors was non-invasive, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different, hence, the e-nose system can be used as a potential diagnostic device for patients with lung diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云墨完成签到 ,获得积分10
7秒前
18秒前
sujinyu发布了新的文献求助80
24秒前
zz完成签到 ,获得积分10
25秒前
34秒前
42秒前
申腾达发布了新的文献求助10
45秒前
WWW发布了新的文献求助10
49秒前
WWW完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
开拖拉机的芍药完成签到 ,获得积分10
1分钟前
ROMANTIC完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助开朗灵萱采纳,获得10
1分钟前
YUE66完成签到,获得积分10
1分钟前
1分钟前
开朗灵萱发布了新的文献求助10
1分钟前
情怀应助奋斗的马里奥采纳,获得10
1分钟前
传奇3应助开朗灵萱采纳,获得10
1分钟前
Richard完成签到,获得积分10
1分钟前
monica完成签到 ,获得积分10
2分钟前
Jessica完成签到,获得积分10
2分钟前
orixero应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
浮岫发布了新的文献求助10
2分钟前
浮岫完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
rebeycca发布了新的文献求助10
3分钟前
奋斗的马里奥完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439