亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design and development of an e-nose system for the diagnosis of pulmonary diseases

慢性阻塞性肺病 肺癌 电子鼻 肺病 医学 鼻子 气体分析呼吸 支持向量机 传感器阵列 呼吸系统 病理 生物医学工程 内科学 外科 计算机科学 人工智能 机器学习 解剖
作者
V A Binson,M. Subramoniam
出处
期刊:Acta of Bioengineering and Biomechanics [Politechnika Wroclawska Oficyna Wydawnicza]
卷期号:23 (1) 被引量:18
标识
DOI:10.37190/abb-01737-2020-03
摘要

Purpose: The aim of this paper was to discuss the design and development of an innovative e-nose system which can detect respiratory ailments by detecting the Volatile Organic Compounds (VOCs) in the expelled breath. In addition to nitrogen, oxygen, and carbon dioxide, the expelled breath contains several VOCs, some of which are indicative of lung-related conditions and can differentiate healthy controls from people affected with pulmonary diseases. Methods: This work detailed the sensor selection process, the assembly of the sensors into a sensor array, the design and implementation of the circuit, sampling methods, and an algorithm for data analysis. The clinical feasibility of the system was checked in 27 lung cancer patients, 22 chronic obstructive pulmonary disease (COPD) patients, and 39 healthy controls including smokers and non-smokers. Results: The classification model developed using the support vector machine (SVM) was able to provide accuracy, sensitivity, and specificity of 88.79, 89.58 and 88.23%, respectively for lung cancer, and 78.70, 72.50 and 82.35%, respectively for COPD. Conclusions: The sensor array system developed with TGS gas sensors was non-invasive, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different, hence, the e-nose system can be used as a potential diagnostic device for patients with lung diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助cyy采纳,获得10
1秒前
月半完成签到,获得积分10
24秒前
大个应助一点采纳,获得30
28秒前
35秒前
天天快乐应助FMK采纳,获得10
36秒前
秀丽的采梦完成签到,获得积分10
38秒前
文静水池完成签到,获得积分10
39秒前
852应助朴素寄文采纳,获得10
41秒前
一点发布了新的文献求助30
41秒前
42秒前
42秒前
43秒前
眯眯眼的网络完成签到,获得积分10
43秒前
45秒前
FMK发布了新的文献求助10
48秒前
边缘人格发布了新的文献求助10
51秒前
51秒前
SciGPT应助hy采纳,获得10
54秒前
57秒前
1分钟前
赘婿应助桃李春风一杯酒采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
学术山芋发布了新的文献求助10
1分钟前
hy发布了新的文献求助10
1分钟前
过时的笙发布了新的文献求助10
1分钟前
zwb完成签到 ,获得积分10
1分钟前
过时的笙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
桃李春风一杯酒完成签到,获得积分10
1分钟前
1分钟前
一点发布了新的文献求助10
1分钟前
1分钟前
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
jh完成签到 ,获得积分10
1分钟前
fay完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701843
捐赠科研通 4594471
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696