亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design and development of an e-nose system for the diagnosis of pulmonary diseases

慢性阻塞性肺病 肺癌 电子鼻 肺病 医学 鼻子 气体分析呼吸 支持向量机 传感器阵列 呼吸系统 病理 生物医学工程 内科学 外科 计算机科学 人工智能 机器学习 解剖
作者
V A Binson,M. Subramoniam
出处
期刊:Acta of Bioengineering and Biomechanics [Politechnika Wroclawska Oficyna Wydawnicza]
卷期号:23 (1) 被引量:18
标识
DOI:10.37190/abb-01737-2020-03
摘要

Purpose: The aim of this paper was to discuss the design and development of an innovative e-nose system which can detect respiratory ailments by detecting the Volatile Organic Compounds (VOCs) in the expelled breath. In addition to nitrogen, oxygen, and carbon dioxide, the expelled breath contains several VOCs, some of which are indicative of lung-related conditions and can differentiate healthy controls from people affected with pulmonary diseases. Methods: This work detailed the sensor selection process, the assembly of the sensors into a sensor array, the design and implementation of the circuit, sampling methods, and an algorithm for data analysis. The clinical feasibility of the system was checked in 27 lung cancer patients, 22 chronic obstructive pulmonary disease (COPD) patients, and 39 healthy controls including smokers and non-smokers. Results: The classification model developed using the support vector machine (SVM) was able to provide accuracy, sensitivity, and specificity of 88.79, 89.58 and 88.23%, respectively for lung cancer, and 78.70, 72.50 and 82.35%, respectively for COPD. Conclusions: The sensor array system developed with TGS gas sensors was non-invasive, low cost, and gave a rapid response. It has been demonstrated that the VOC profiles of patients with pulmonary diseases and healthy controls are different, hence, the e-nose system can be used as a potential diagnostic device for patients with lung diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助linkman采纳,获得30
2秒前
所所应助linkman采纳,获得10
2秒前
FashionBoy应助linkman采纳,获得10
2秒前
wanci应助linkman采纳,获得10
2秒前
英俊的铭应助linkman采纳,获得10
2秒前
酷波er应助linkman采纳,获得10
2秒前
科研通AI2S应助linkman采纳,获得10
2秒前
今后应助linkman采纳,获得10
2秒前
小二郎应助linkman采纳,获得10
2秒前
脑洞疼应助linkman采纳,获得10
2秒前
7秒前
xiaoli发布了新的文献求助10
12秒前
慕青应助ZR采纳,获得10
19秒前
21秒前
胡天硕发布了新的文献求助10
25秒前
我爱看文献是假的完成签到,获得积分10
28秒前
ZR完成签到,获得积分10
34秒前
zyl完成签到 ,获得积分10
43秒前
NexusExplorer应助ddk六采纳,获得10
45秒前
46秒前
七星关脆哨丁完成签到,获得积分10
47秒前
Ava应助胡天硕采纳,获得10
47秒前
47秒前
Nowind发布了新的文献求助10
48秒前
干净南风发布了新的文献求助10
50秒前
linkman发布了新的文献求助10
51秒前
用户完成签到,获得积分10
53秒前
daisies应助xiaoli采纳,获得20
54秒前
万能图书馆应助干净南风采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助Min采纳,获得10
1分钟前
1分钟前
郭宇完成签到 ,获得积分10
1分钟前
CipherSage应助yzbbb采纳,获得10
1分钟前
lili完成签到,获得积分10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
LMW应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625762
求助须知:如何正确求助?哪些是违规求助? 4024874
关于积分的说明 12458015
捐赠科研通 3709929
什么是DOI,文献DOI怎么找? 2046390
邀请新用户注册赠送积分活动 1078270
科研通“疑难数据库(出版商)”最低求助积分说明 960772