Bayesian‐optimized unsupervised learning approach for structural damage detection

结构健康监测 计算机科学 新知识检测 稳健性(进化) 机器学习 贝叶斯概率 人工智能 无监督学习 贝叶斯推理 特征提取 极限学习机 数据挖掘 支持向量机 不确定度量化 核密度估计 模式识别(心理学) 工程类 新颖性 数学 统计 结构工程 人工神经网络 哲学 生物化学 化学 神学 估计员 基因
作者
Kareem Eltouny,Xiao Liang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:36 (10): 1249-1269 被引量:60
标识
DOI:10.1111/mice.12680
摘要

Abstract Structural health monitoring (SHM) is developing rapidly to fulfill the world's need for resilient and sustainable communities. Due to the current advancements in machine learning and data science, data‐driven SHM is an attractive solution for real‐time damage detection compared to the traditional nondestructive evaluation techniques. However, most widely available data‐driven SHM methods rely on fully or partially simulated data to train the statistical model, and thus require a number of predefined assumptions and parameters, or are not adapted for post‐extreme events damage diagnosis. In this study, we propose a density‐based unsupervised learning approach for structural damage detection and localization. This approach leverages cumulative intensity measures for damage‐sensitive feature extraction for the first time in an unsupervised learning approach. Furthermore, a statistical model construction process is proposed based on kernel density maximum entropy (KDME) and Bayesian optimization. The framework is evaluated in three case studies. The first two involve a numerical three‐story building and a numerical nine‐story asymmetrical building that are both subjected to 100 ground motion excitations while considering environmental variations. The proposed framework is able to detect and localize damage in those case studies with an average accuracy of 92%. The third case study, which contains 44 shake‐table tests of a three‐story frame structure with masonry infill, is used to experimentally validate the proposed framework in damage detection. The three case studies demonstrate the potential and robustness of the proposed Bayesian‐optimized, multivariate KDME novelty detection framework for detecting and localizing structural damage, especially after extreme events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朵拉A梦完成签到,获得积分10
2秒前
U9A发布了新的文献求助10
2秒前
3秒前
chris完成签到,获得积分10
4秒前
蓝色花生豆完成签到,获得积分10
4秒前
隐形曼青应助犹豫的寄文采纳,获得10
5秒前
百灵鸟完成签到,获得积分10
5秒前
6秒前
Hq发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
科研通AI5应助222采纳,获得10
8秒前
谨慎哈密瓜完成签到,获得积分10
9秒前
核桃发布了新的文献求助30
10秒前
彭于晏应助CHAIZH采纳,获得10
10秒前
钙离子发布了新的文献求助10
11秒前
怂怂鼠完成签到,获得积分10
12秒前
汉堡包应助坚定小熊猫采纳,获得10
13秒前
内向雅香发布了新的文献求助10
13秒前
圈圈儿关注了科研通微信公众号
14秒前
碧蓝醉蝶完成签到 ,获得积分10
14秒前
饼藏发布了新的文献求助10
15秒前
15秒前
CodeCraft应助HHHAN采纳,获得10
15秒前
16秒前
搜集达人应助xpqiu采纳,获得10
16秒前
传奇3应助kaka采纳,获得10
16秒前
17秒前
17秒前
碧蓝醉蝶关注了科研通微信公众号
17秒前
18秒前
18秒前
飘逸的寄柔完成签到,获得积分10
19秒前
20秒前
20秒前
CHAIZH发布了新的文献求助10
21秒前
糖炒栗子发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528