Bayesian‐optimized unsupervised learning approach for structural damage detection

结构健康监测 计算机科学 新知识检测 稳健性(进化) 机器学习 贝叶斯概率 人工智能 无监督学习 贝叶斯推理 特征提取 极限学习机 数据挖掘 支持向量机 不确定度量化 核密度估计 模式识别(心理学) 工程类 新颖性 数学 统计 结构工程 人工神经网络 生物化学 哲学 估计员 化学 神学 基因
作者
Kareem Eltouny,Xiao Liang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:36 (10): 1249-1269 被引量:71
标识
DOI:10.1111/mice.12680
摘要

Abstract Structural health monitoring (SHM) is developing rapidly to fulfill the world's need for resilient and sustainable communities. Due to the current advancements in machine learning and data science, data‐driven SHM is an attractive solution for real‐time damage detection compared to the traditional nondestructive evaluation techniques. However, most widely available data‐driven SHM methods rely on fully or partially simulated data to train the statistical model, and thus require a number of predefined assumptions and parameters, or are not adapted for post‐extreme events damage diagnosis. In this study, we propose a density‐based unsupervised learning approach for structural damage detection and localization. This approach leverages cumulative intensity measures for damage‐sensitive feature extraction for the first time in an unsupervised learning approach. Furthermore, a statistical model construction process is proposed based on kernel density maximum entropy (KDME) and Bayesian optimization. The framework is evaluated in three case studies. The first two involve a numerical three‐story building and a numerical nine‐story asymmetrical building that are both subjected to 100 ground motion excitations while considering environmental variations. The proposed framework is able to detect and localize damage in those case studies with an average accuracy of 92%. The third case study, which contains 44 shake‐table tests of a three‐story frame structure with masonry infill, is used to experimentally validate the proposed framework in damage detection. The three case studies demonstrate the potential and robustness of the proposed Bayesian‐optimized, multivariate KDME novelty detection framework for detecting and localizing structural damage, especially after extreme events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗静蕾发布了新的文献求助10
1秒前
大知闲闲发布了新的文献求助10
2秒前
sxf发布了新的文献求助10
3秒前
持满发布了新的文献求助10
3秒前
3秒前
大锤哥发布了新的文献求助10
5秒前
简单的妙之完成签到,获得积分10
5秒前
bellla完成签到 ,获得积分20
5秒前
5秒前
喵了个咪发布了新的文献求助10
5秒前
大模型应助1157588380采纳,获得10
5秒前
ding应助奋斗静蕾采纳,获得10
6秒前
strong.quite完成签到,获得积分10
7秒前
迪迦完成签到,获得积分10
8秒前
vendimia发布了新的文献求助10
8秒前
科研通AI5应助Capital采纳,获得10
10秒前
Cyrus发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
pcr163应助Lico采纳,获得200
13秒前
loren应助彩色的中蓝采纳,获得10
13秒前
14秒前
我不理解关注了科研通微信公众号
15秒前
酷波er应助难过冰淇淋采纳,获得10
15秒前
15秒前
左园园完成签到,获得积分10
17秒前
18秒前
儒雅的善愁完成签到,获得积分10
18秒前
一个小胖子完成签到,获得积分10
18秒前
goldNAN发布了新的文献求助10
18秒前
乐乐应助快乐映秋采纳,获得10
19秒前
20秒前
陈秋红完成签到,获得积分10
20秒前
PINk发布了新的文献求助10
21秒前
21秒前
章赛发布了新的文献求助10
22秒前
23秒前
左园园发布了新的文献求助10
24秒前
搜集达人应助DS采纳,获得10
24秒前
24秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661