Poly(catechol)s As Universal Electrode Materials for Advanced Organic Batteries

电化学 儿茶酚 材料科学 阴极 氧化还原 聚合物 电极 有机自由基电池 化学工程 高分子化学 化学 无机化学 有机化学 复合材料 工程类 物理化学
作者
Nagaraj Patil,Rebeca Marcilla
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 46-46
标识
DOI:10.1149/ma2021-01146mtgabs
摘要

This decade has been witnessing the resurgence of redox-active polymer (RAP) based organic electrode materials in the quest of building large-scale, safe, economical, and sustainable electrochemical energy storage technologies (EESTs) after their brief silence. [1] Most of these RAPs mainly fall under the category of quinone, imide, organosulfur or radical polymers that have demonstrated admirable electrochemical performances. However, it is further necessary to design novel electrode materials with outstanding properties for the development of “next-generation” “high-performance” advanced organic batteries. Here, I present the macromolecular engineering of RAPs bearing catechol pendants of different functionality/composition that dictate their overall electrochemical performances in different battery technologies. Firstly, electrochemical performance of poly(catechol) cathodes in lithium-ion batteries will be presented. By tuning the pendant catechol structure, specific capacity of the homopolymer was boosted from 217 [for P(DA)] to 350 [for P(4VC)] mAh g ‒1 .[2] Furthermore, incorporation of cation conducting styrene sulfonates within the polymer chain in P(4VC- stat -LiSS) drastically improved the rate capability compared to P(4VC). Moreover, a voltage gain of +350 mV was demonstrated when catechol pendants were confined to an electron-withdrawing poly(ionic liquid) backbone, compared to the same redox groups groups in neutral poly(acrylamide) backbone.[3] Secondly, the application of poly(catechol) as organic cathodes for aqueous Zinc-ion batteries will be presented.[4] The Zn || P(4VC 86 - stat -SS 14 ) cell in the optimized Zn(TFSI) 2 -H 2 O electrolyte simultaneously delivered high gravimetric capacity (324 mAh g ‒1 ), high areal capacity (5.5 mAh cm ‒2 ) at 1C, with remarkable capacity of 98 mAh g ‒1 at 450C, extremely low capacity fading rate of 0.00035% per cycle over 48 000 cycles at 30 C rate and low temperature operativity (178 mAh g ‒1 at –35 °C). Finally, all-polymer aqueous battery comprising poly(catechol) cathode and poly(imide) anode will be presented.[5] Interestingly, full cell exhibited tunable cell voltage depending on the salt used in the aqueous electrolyte, i.e., 0.58, 0.74, 0.89, and 0.95 V, respectively, when Li + , Zn 2+ , Al 3+ , and Li + /H + were utilized as charge carriers. The full-cell delivered best rate performance (a sub-second charge/discharge) and cycling stability (80% capacity retention over 1000 cycles at 5 A g ‒1 ) in Li + . Furthermore, maximum energy/power density of 80.6 Wh kg anode+cathode ‒1 /348 kW kg anode+cathode ‒1 was achieved in Li + /H + , superior than most of the previously reported aqueous all–polymer batteries. Taking together, by the applicability of poly(catechol) as organic electrode material in different battery technologies, the following general conclusions can be drawn. They are quite universal- and accommodate reversibly numerous cations, ranging from H + , and Li + to Al 3+ . This unprecedented approach is based on a simple catecholato–cation complex charge storage mechanism (n-type redox molecules). Development of such universal organic electrodes is particularly intriguing, and gaining popularity among the battery community due to the fact that it demands minimal electrode/device engineering efforts. References: 1 S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka and U. S. Schubert, Chem. Rev. , 2016, 116 , 9438–9484. 2 N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs, C. Jérôme and C. Detrembleur, Adv. Mater. , 2017, 29 , 1703373. 3 N. Patil, M. Aqil, A. Aqil, F. Ouhib, R. Marcilla, A. Minoia, R. Lazzaroni, C. Jérôme and C. Detrembleur, Chem. Mater. , 2018, 30 , 5831–5835. 4 N. Patil, et al., Adv Energy Mater , Submitted. 5 N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma and R. Marcilla, J. Mater. Chem. A , , DOI:10.1039/D0TA09404H. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣海雪完成签到,获得积分10
1秒前
1秒前
嘭嘭嘭发布了新的文献求助20
2秒前
苹果百川完成签到,获得积分10
2秒前
沉静凡白完成签到,获得积分10
2秒前
JYH完成签到,获得积分10
5秒前
tree发布了新的文献求助10
6秒前
6秒前
KK完成签到 ,获得积分10
6秒前
orixero应助科研狗灰灰采纳,获得10
7秒前
高贵煜祺完成签到,获得积分10
8秒前
9秒前
sedrakyan完成签到 ,获得积分10
9秒前
Robot完成签到 ,获得积分10
9秒前
科研通AI6.1应助晓军采纳,获得10
9秒前
zwenng发布了新的文献求助10
9秒前
七月完成签到,获得积分10
10秒前
归尘发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
小马甲应助Wynne采纳,获得10
12秒前
yuyu发布了新的文献求助10
13秒前
shukq发布了新的文献求助10
13秒前
13秒前
贪玩板凳发布了新的文献求助30
13秒前
14秒前
14秒前
可爱的函函应助BBC采纳,获得10
14秒前
无花果应助tombo100采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
kangkang完成签到 ,获得积分10
16秒前
18秒前
18秒前
ping发布了新的文献求助10
19秒前
落水无波发布了新的文献求助10
19秒前
20秒前
SciGPT应助科研小趴菜采纳,获得10
20秒前
谦让蓝血完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281