Poly(catechol)s As Universal Electrode Materials for Advanced Organic Batteries

电化学 儿茶酚 材料科学 阴极 氧化还原 聚合物 电极 有机自由基电池 化学工程 高分子化学 化学 无机化学 有机化学 复合材料 工程类 物理化学
作者
Nagaraj Patil,Rebeca Marcilla
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 46-46
标识
DOI:10.1149/ma2021-01146mtgabs
摘要

This decade has been witnessing the resurgence of redox-active polymer (RAP) based organic electrode materials in the quest of building large-scale, safe, economical, and sustainable electrochemical energy storage technologies (EESTs) after their brief silence. [1] Most of these RAPs mainly fall under the category of quinone, imide, organosulfur or radical polymers that have demonstrated admirable electrochemical performances. However, it is further necessary to design novel electrode materials with outstanding properties for the development of “next-generation” “high-performance” advanced organic batteries. Here, I present the macromolecular engineering of RAPs bearing catechol pendants of different functionality/composition that dictate their overall electrochemical performances in different battery technologies. Firstly, electrochemical performance of poly(catechol) cathodes in lithium-ion batteries will be presented. By tuning the pendant catechol structure, specific capacity of the homopolymer was boosted from 217 [for P(DA)] to 350 [for P(4VC)] mAh g ‒1 .[2] Furthermore, incorporation of cation conducting styrene sulfonates within the polymer chain in P(4VC- stat -LiSS) drastically improved the rate capability compared to P(4VC). Moreover, a voltage gain of +350 mV was demonstrated when catechol pendants were confined to an electron-withdrawing poly(ionic liquid) backbone, compared to the same redox groups groups in neutral poly(acrylamide) backbone.[3] Secondly, the application of poly(catechol) as organic cathodes for aqueous Zinc-ion batteries will be presented.[4] The Zn || P(4VC 86 - stat -SS 14 ) cell in the optimized Zn(TFSI) 2 -H 2 O electrolyte simultaneously delivered high gravimetric capacity (324 mAh g ‒1 ), high areal capacity (5.5 mAh cm ‒2 ) at 1C, with remarkable capacity of 98 mAh g ‒1 at 450C, extremely low capacity fading rate of 0.00035% per cycle over 48 000 cycles at 30 C rate and low temperature operativity (178 mAh g ‒1 at –35 °C). Finally, all-polymer aqueous battery comprising poly(catechol) cathode and poly(imide) anode will be presented.[5] Interestingly, full cell exhibited tunable cell voltage depending on the salt used in the aqueous electrolyte, i.e., 0.58, 0.74, 0.89, and 0.95 V, respectively, when Li + , Zn 2+ , Al 3+ , and Li + /H + were utilized as charge carriers. The full-cell delivered best rate performance (a sub-second charge/discharge) and cycling stability (80% capacity retention over 1000 cycles at 5 A g ‒1 ) in Li + . Furthermore, maximum energy/power density of 80.6 Wh kg anode+cathode ‒1 /348 kW kg anode+cathode ‒1 was achieved in Li + /H + , superior than most of the previously reported aqueous all–polymer batteries. Taking together, by the applicability of poly(catechol) as organic electrode material in different battery technologies, the following general conclusions can be drawn. They are quite universal- and accommodate reversibly numerous cations, ranging from H + , and Li + to Al 3+ . This unprecedented approach is based on a simple catecholato–cation complex charge storage mechanism (n-type redox molecules). Development of such universal organic electrodes is particularly intriguing, and gaining popularity among the battery community due to the fact that it demands minimal electrode/device engineering efforts. References: 1 S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka and U. S. Schubert, Chem. Rev. , 2016, 116 , 9438–9484. 2 N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs, C. Jérôme and C. Detrembleur, Adv. Mater. , 2017, 29 , 1703373. 3 N. Patil, M. Aqil, A. Aqil, F. Ouhib, R. Marcilla, A. Minoia, R. Lazzaroni, C. Jérôme and C. Detrembleur, Chem. Mater. , 2018, 30 , 5831–5835. 4 N. Patil, et al., Adv Energy Mater , Submitted. 5 N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma and R. Marcilla, J. Mater. Chem. A , , DOI:10.1039/D0TA09404H. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳冰淇淋完成签到 ,获得积分10
1秒前
3秒前
3秒前
清晏完成签到,获得积分10
4秒前
曲书文完成签到,获得积分10
5秒前
李瑞瑞发布了新的文献求助10
5秒前
5123完成签到,获得积分10
5秒前
勤劳落雁发布了新的文献求助10
5秒前
5秒前
8秒前
xuxu完成签到 ,获得积分10
8秒前
9秒前
毛毛虫发布了新的文献求助10
9秒前
科研通AI5应助朴斓采纳,获得10
10秒前
陈彦冰完成签到,获得积分10
10秒前
tianny完成签到,获得积分10
11秒前
浪迹天涯发布了新的文献求助10
12秒前
星星发布了新的文献求助10
12秒前
李瑞瑞完成签到,获得积分10
13秒前
13秒前
15秒前
星辰大海应助jy采纳,获得10
15秒前
16秒前
我是站长才怪应助Khr1stINK采纳,获得10
16秒前
17秒前
xh完成签到,获得积分10
18秒前
para_团结完成签到,获得积分10
19秒前
怡然剑成发布了新的文献求助10
19秒前
20秒前
20秒前
ipeakkka发布了新的文献求助10
20秒前
George完成签到,获得积分10
22秒前
WDK完成签到,获得积分10
22秒前
情怀应助敏感的芷采纳,获得10
22秒前
Orange应助方勇飞采纳,获得10
23秒前
FashionBoy应助烂漫驳采纳,获得10
23秒前
24秒前
25秒前
大鱼完成签到,获得积分10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824