Poly(catechol)s As Universal Electrode Materials for Advanced Organic Batteries

电化学 儿茶酚 材料科学 阴极 氧化还原 聚合物 电极 有机自由基电池 化学工程 高分子化学 化学 无机化学 有机化学 复合材料 工程类 物理化学
作者
Nagaraj Patil,Rebeca Marcilla
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 46-46
标识
DOI:10.1149/ma2021-01146mtgabs
摘要

This decade has been witnessing the resurgence of redox-active polymer (RAP) based organic electrode materials in the quest of building large-scale, safe, economical, and sustainable electrochemical energy storage technologies (EESTs) after their brief silence. [1] Most of these RAPs mainly fall under the category of quinone, imide, organosulfur or radical polymers that have demonstrated admirable electrochemical performances. However, it is further necessary to design novel electrode materials with outstanding properties for the development of “next-generation” “high-performance” advanced organic batteries. Here, I present the macromolecular engineering of RAPs bearing catechol pendants of different functionality/composition that dictate their overall electrochemical performances in different battery technologies. Firstly, electrochemical performance of poly(catechol) cathodes in lithium-ion batteries will be presented. By tuning the pendant catechol structure, specific capacity of the homopolymer was boosted from 217 [for P(DA)] to 350 [for P(4VC)] mAh g ‒1 .[2] Furthermore, incorporation of cation conducting styrene sulfonates within the polymer chain in P(4VC- stat -LiSS) drastically improved the rate capability compared to P(4VC). Moreover, a voltage gain of +350 mV was demonstrated when catechol pendants were confined to an electron-withdrawing poly(ionic liquid) backbone, compared to the same redox groups groups in neutral poly(acrylamide) backbone.[3] Secondly, the application of poly(catechol) as organic cathodes for aqueous Zinc-ion batteries will be presented.[4] The Zn || P(4VC 86 - stat -SS 14 ) cell in the optimized Zn(TFSI) 2 -H 2 O electrolyte simultaneously delivered high gravimetric capacity (324 mAh g ‒1 ), high areal capacity (5.5 mAh cm ‒2 ) at 1C, with remarkable capacity of 98 mAh g ‒1 at 450C, extremely low capacity fading rate of 0.00035% per cycle over 48 000 cycles at 30 C rate and low temperature operativity (178 mAh g ‒1 at –35 °C). Finally, all-polymer aqueous battery comprising poly(catechol) cathode and poly(imide) anode will be presented.[5] Interestingly, full cell exhibited tunable cell voltage depending on the salt used in the aqueous electrolyte, i.e., 0.58, 0.74, 0.89, and 0.95 V, respectively, when Li + , Zn 2+ , Al 3+ , and Li + /H + were utilized as charge carriers. The full-cell delivered best rate performance (a sub-second charge/discharge) and cycling stability (80% capacity retention over 1000 cycles at 5 A g ‒1 ) in Li + . Furthermore, maximum energy/power density of 80.6 Wh kg anode+cathode ‒1 /348 kW kg anode+cathode ‒1 was achieved in Li + /H + , superior than most of the previously reported aqueous all–polymer batteries. Taking together, by the applicability of poly(catechol) as organic electrode material in different battery technologies, the following general conclusions can be drawn. They are quite universal- and accommodate reversibly numerous cations, ranging from H + , and Li + to Al 3+ . This unprecedented approach is based on a simple catecholato–cation complex charge storage mechanism (n-type redox molecules). Development of such universal organic electrodes is particularly intriguing, and gaining popularity among the battery community due to the fact that it demands minimal electrode/device engineering efforts. References: 1 S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka and U. S. Schubert, Chem. Rev. , 2016, 116 , 9438–9484. 2 N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs, C. Jérôme and C. Detrembleur, Adv. Mater. , 2017, 29 , 1703373. 3 N. Patil, M. Aqil, A. Aqil, F. Ouhib, R. Marcilla, A. Minoia, R. Lazzaroni, C. Jérôme and C. Detrembleur, Chem. Mater. , 2018, 30 , 5831–5835. 4 N. Patil, et al., Adv Energy Mater , Submitted. 5 N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma and R. Marcilla, J. Mater. Chem. A , , DOI:10.1039/D0TA09404H. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助陈花蕾采纳,获得10
刚刚
灵巧土豆发布了新的文献求助10
刚刚
刚刚
tan90完成签到,获得积分10
1秒前
bkagyin应助想飞的猪采纳,获得10
1秒前
lotus发布了新的文献求助10
1秒前
1秒前
马凤智完成签到 ,获得积分10
1秒前
孤独千愁发布了新的文献求助10
1秒前
2秒前
Allen发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
xiaowang发布了新的文献求助10
2秒前
小刚大王发布了新的文献求助10
2秒前
ljj121231完成签到,获得积分20
3秒前
keyanren_小庆完成签到 ,获得积分10
3秒前
3秒前
温暖乐枫发布了新的文献求助10
3秒前
mei完成签到,获得积分10
3秒前
汉堡包应助璐璇采纳,获得10
4秒前
优雅千风完成签到,获得积分10
5秒前
大个应助czs采纳,获得10
5秒前
6秒前
852应助xiaowang采纳,获得10
6秒前
Jerry发布了新的文献求助10
7秒前
SciGPT应助漂亮的浩阑采纳,获得10
7秒前
隐形曼青应助Allen采纳,获得10
7秒前
脑洞疼应助abc采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
zhangjiyuan发布了新的文献求助10
8秒前
研友_VZG7GZ应助莉莉是天使采纳,获得10
8秒前
lyb发布了新的文献求助10
9秒前
ww完成签到,获得积分20
10秒前
andurance发布了新的文献求助10
10秒前
英勇皮皮虾完成签到,获得积分10
10秒前
尊敬的魔镜完成签到,获得积分10
10秒前
11秒前
holoka完成签到,获得积分10
11秒前
英俊的铭应助一根芦苇采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006