清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Poly(catechol)s As Universal Electrode Materials for Advanced Organic Batteries

电化学 儿茶酚 材料科学 阴极 氧化还原 聚合物 电极 有机自由基电池 化学工程 高分子化学 化学 无机化学 有机化学 复合材料 物理化学 工程类
作者
Nagaraj Patil,Rebeca Marcilla
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 46-46
标识
DOI:10.1149/ma2021-01146mtgabs
摘要

This decade has been witnessing the resurgence of redox-active polymer (RAP) based organic electrode materials in the quest of building large-scale, safe, economical, and sustainable electrochemical energy storage technologies (EESTs) after their brief silence. [1] Most of these RAPs mainly fall under the category of quinone, imide, organosulfur or radical polymers that have demonstrated admirable electrochemical performances. However, it is further necessary to design novel electrode materials with outstanding properties for the development of “next-generation” “high-performance” advanced organic batteries. Here, I present the macromolecular engineering of RAPs bearing catechol pendants of different functionality/composition that dictate their overall electrochemical performances in different battery technologies. Firstly, electrochemical performance of poly(catechol) cathodes in lithium-ion batteries will be presented. By tuning the pendant catechol structure, specific capacity of the homopolymer was boosted from 217 [for P(DA)] to 350 [for P(4VC)] mAh g ‒1 .[2] Furthermore, incorporation of cation conducting styrene sulfonates within the polymer chain in P(4VC- stat -LiSS) drastically improved the rate capability compared to P(4VC). Moreover, a voltage gain of +350 mV was demonstrated when catechol pendants were confined to an electron-withdrawing poly(ionic liquid) backbone, compared to the same redox groups groups in neutral poly(acrylamide) backbone.[3] Secondly, the application of poly(catechol) as organic cathodes for aqueous Zinc-ion batteries will be presented.[4] The Zn || P(4VC 86 - stat -SS 14 ) cell in the optimized Zn(TFSI) 2 -H 2 O electrolyte simultaneously delivered high gravimetric capacity (324 mAh g ‒1 ), high areal capacity (5.5 mAh cm ‒2 ) at 1C, with remarkable capacity of 98 mAh g ‒1 at 450C, extremely low capacity fading rate of 0.00035% per cycle over 48 000 cycles at 30 C rate and low temperature operativity (178 mAh g ‒1 at –35 °C). Finally, all-polymer aqueous battery comprising poly(catechol) cathode and poly(imide) anode will be presented.[5] Interestingly, full cell exhibited tunable cell voltage depending on the salt used in the aqueous electrolyte, i.e., 0.58, 0.74, 0.89, and 0.95 V, respectively, when Li + , Zn 2+ , Al 3+ , and Li + /H + were utilized as charge carriers. The full-cell delivered best rate performance (a sub-second charge/discharge) and cycling stability (80% capacity retention over 1000 cycles at 5 A g ‒1 ) in Li + . Furthermore, maximum energy/power density of 80.6 Wh kg anode+cathode ‒1 /348 kW kg anode+cathode ‒1 was achieved in Li + /H + , superior than most of the previously reported aqueous all–polymer batteries. Taking together, by the applicability of poly(catechol) as organic electrode material in different battery technologies, the following general conclusions can be drawn. They are quite universal- and accommodate reversibly numerous cations, ranging from H + , and Li + to Al 3+ . This unprecedented approach is based on a simple catecholato–cation complex charge storage mechanism (n-type redox molecules). Development of such universal organic electrodes is particularly intriguing, and gaining popularity among the battery community due to the fact that it demands minimal electrode/device engineering efforts. References: 1 S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka and U. S. Schubert, Chem. Rev. , 2016, 116 , 9438–9484. 2 N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs, C. Jérôme and C. Detrembleur, Adv. Mater. , 2017, 29 , 1703373. 3 N. Patil, M. Aqil, A. Aqil, F. Ouhib, R. Marcilla, A. Minoia, R. Lazzaroni, C. Jérôme and C. Detrembleur, Chem. Mater. , 2018, 30 , 5831–5835. 4 N. Patil, et al., Adv Energy Mater , Submitted. 5 N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma and R. Marcilla, J. Mater. Chem. A , , DOI:10.1039/D0TA09404H. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
Bingbing关注了科研通微信公众号
25秒前
YY发布了新的文献求助30
29秒前
YY关闭了YY文献求助
42秒前
量子星尘发布了新的文献求助10
50秒前
1分钟前
超男完成签到 ,获得积分10
1分钟前
CUN完成签到,获得积分10
1分钟前
猫猫i完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
YY驳回了打打应助
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qian完成签到 ,获得积分10
3分钟前
白天亮完成签到,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分10
4分钟前
4分钟前
游鱼完成签到,获得积分10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
4分钟前
传奇完成签到 ,获得积分10
4分钟前
4分钟前
什么也难不倒我完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
YY给YY的求助进行了留言
4分钟前
缓慢的忆枫完成签到,获得积分20
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
6分钟前
GIA完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
陶世立完成签到 ,获得积分10
7分钟前
轻松的甜瓜完成签到,获得积分10
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
8分钟前
nojego完成签到,获得积分10
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983