Poly(catechol)s As Universal Electrode Materials for Advanced Organic Batteries

电化学 儿茶酚 材料科学 阴极 氧化还原 聚合物 电极 有机自由基电池 化学工程 高分子化学 化学 无机化学 有机化学 复合材料 物理化学 工程类
作者
Nagaraj Patil,Rebeca Marcilla
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (1): 46-46
标识
DOI:10.1149/ma2021-01146mtgabs
摘要

This decade has been witnessing the resurgence of redox-active polymer (RAP) based organic electrode materials in the quest of building large-scale, safe, economical, and sustainable electrochemical energy storage technologies (EESTs) after their brief silence. [1] Most of these RAPs mainly fall under the category of quinone, imide, organosulfur or radical polymers that have demonstrated admirable electrochemical performances. However, it is further necessary to design novel electrode materials with outstanding properties for the development of “next-generation” “high-performance” advanced organic batteries. Here, I present the macromolecular engineering of RAPs bearing catechol pendants of different functionality/composition that dictate their overall electrochemical performances in different battery technologies. Firstly, electrochemical performance of poly(catechol) cathodes in lithium-ion batteries will be presented. By tuning the pendant catechol structure, specific capacity of the homopolymer was boosted from 217 [for P(DA)] to 350 [for P(4VC)] mAh g ‒1 .[2] Furthermore, incorporation of cation conducting styrene sulfonates within the polymer chain in P(4VC- stat -LiSS) drastically improved the rate capability compared to P(4VC). Moreover, a voltage gain of +350 mV was demonstrated when catechol pendants were confined to an electron-withdrawing poly(ionic liquid) backbone, compared to the same redox groups groups in neutral poly(acrylamide) backbone.[3] Secondly, the application of poly(catechol) as organic cathodes for aqueous Zinc-ion batteries will be presented.[4] The Zn || P(4VC 86 - stat -SS 14 ) cell in the optimized Zn(TFSI) 2 -H 2 O electrolyte simultaneously delivered high gravimetric capacity (324 mAh g ‒1 ), high areal capacity (5.5 mAh cm ‒2 ) at 1C, with remarkable capacity of 98 mAh g ‒1 at 450C, extremely low capacity fading rate of 0.00035% per cycle over 48 000 cycles at 30 C rate and low temperature operativity (178 mAh g ‒1 at –35 °C). Finally, all-polymer aqueous battery comprising poly(catechol) cathode and poly(imide) anode will be presented.[5] Interestingly, full cell exhibited tunable cell voltage depending on the salt used in the aqueous electrolyte, i.e., 0.58, 0.74, 0.89, and 0.95 V, respectively, when Li + , Zn 2+ , Al 3+ , and Li + /H + were utilized as charge carriers. The full-cell delivered best rate performance (a sub-second charge/discharge) and cycling stability (80% capacity retention over 1000 cycles at 5 A g ‒1 ) in Li + . Furthermore, maximum energy/power density of 80.6 Wh kg anode+cathode ‒1 /348 kW kg anode+cathode ‒1 was achieved in Li + /H + , superior than most of the previously reported aqueous all–polymer batteries. Taking together, by the applicability of poly(catechol) as organic electrode material in different battery technologies, the following general conclusions can be drawn. They are quite universal- and accommodate reversibly numerous cations, ranging from H + , and Li + to Al 3+ . This unprecedented approach is based on a simple catecholato–cation complex charge storage mechanism (n-type redox molecules). Development of such universal organic electrodes is particularly intriguing, and gaining popularity among the battery community due to the fact that it demands minimal electrode/device engineering efforts. References: 1 S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka and U. S. Schubert, Chem. Rev. , 2016, 116 , 9438–9484. 2 N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs, C. Jérôme and C. Detrembleur, Adv. Mater. , 2017, 29 , 1703373. 3 N. Patil, M. Aqil, A. Aqil, F. Ouhib, R. Marcilla, A. Minoia, R. Lazzaroni, C. Jérôme and C. Detrembleur, Chem. Mater. , 2018, 30 , 5831–5835. 4 N. Patil, et al., Adv Energy Mater , Submitted. 5 N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, N. Casado, D. Mecerreyes, J. Palma and R. Marcilla, J. Mater. Chem. A , , DOI:10.1039/D0TA09404H. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmmmmgm完成签到 ,获得积分10
刚刚
xiaofeng5838完成签到,获得积分10
5秒前
aoyo完成签到,获得积分10
7秒前
成长crs完成签到 ,获得积分10
7秒前
帅气的宽完成签到 ,获得积分10
11秒前
华仔应助靓丽的悒采纳,获得10
12秒前
Lucky完成签到 ,获得积分10
15秒前
Joy完成签到,获得积分10
18秒前
huminjie完成签到 ,获得积分10
20秒前
feng完成签到,获得积分10
21秒前
23秒前
研友_ZA2B68完成签到,获得积分0
24秒前
wei发布了新的文献求助10
26秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
28秒前
要自律的锅完成签到 ,获得积分10
29秒前
勤恳的书文完成签到 ,获得积分10
29秒前
靓丽的悒完成签到 ,获得积分10
30秒前
123123完成签到 ,获得积分10
31秒前
xiaoyi完成签到 ,获得积分10
32秒前
RenY完成签到,获得积分10
33秒前
灯座发布了新的文献求助10
35秒前
李璟文完成签到 ,获得积分10
35秒前
35秒前
Zhjie126完成签到,获得积分10
36秒前
Chris完成签到 ,获得积分0
38秒前
fancy发布了新的文献求助10
40秒前
41秒前
sa0022完成签到,获得积分10
42秒前
chenkj完成签到,获得积分10
43秒前
ikun完成签到,获得积分10
43秒前
小满完成签到 ,获得积分10
44秒前
左右完成签到 ,获得积分10
47秒前
47秒前
金秋完成签到,获得积分0
47秒前
枯藤老柳树完成签到,获得积分10
50秒前
yy完成签到 ,获得积分10
51秒前
周辰完成签到,获得积分10
51秒前
whqpeter完成签到,获得积分10
52秒前
小二郎应助fancy采纳,获得10
56秒前
Dorren完成签到,获得积分10
57秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212353
求助须知:如何正确求助?哪些是违规求助? 4388551
关于积分的说明 13664063
捐赠科研通 4249022
什么是DOI,文献DOI怎么找? 2331365
邀请新用户注册赠送积分活动 1329024
关于科研通互助平台的介绍 1282440