The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice

透明度(行为) 建议(编程) 计算机科学 感知 算法 集合(抽象数据类型) 机器学习 心理学 计算机安全 神经科学 程序设计语言
作者
Christiane B. Haubitz,Cedric Alexander Lehmann,Andreas Fügener,Ulrich W. Thonemann
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (9): 3419-3434 被引量:11
标识
DOI:10.1111/poms.13770
摘要

Although algorithmic decision support is omnipresent in many managerial tasks, a lack of algorithm transparency is often stated as a barrier to successful human–machine collaboration. In this paper, we analyze the effects of algorithm transparency on the use of advice from algorithms with different degrees of complexity. We conduct a set of laboratory experiments in which participants receive identical advice from algorithms with different levels of transparency and complexity. Our results indicate that not the algorithm itself, but the individually perceived appropriateness of algorithmic complexity moderates the effects of transparency on the use of advice. We summarize this effect as a plateau curve: While perceiving an algorithm as too simple severely harms the use of its advice, the perception of an algorithm as being too complex has no significant effect. Our insights suggest that managers do not have to be concerned about revealing algorithms that are perceived to be appropriately complex or too complex to decision‐makers, even if the decision‐makers do not fully comprehend them. However, providing transparency on algorithms that are perceived to be simpler than appropriate could disappoint people's expectations and thereby reduce the use of their advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
Hello应助潇洒的青采纳,获得10
刚刚
刚刚
共享精神应助长孙归尘采纳,获得10
刚刚
1秒前
Evan123发布了新的文献求助10
1秒前
2秒前
xctdyl1992发布了新的文献求助10
2秒前
2秒前
Su完成签到,获得积分10
2秒前
俗丨完成签到,获得积分10
3秒前
科研通AI5应助海底落日采纳,获得30
3秒前
3秒前
CodeCraft应助纯真忆安采纳,获得10
3秒前
顺顺发布了新的文献求助10
3秒前
3秒前
4秒前
nan完成签到,获得积分10
4秒前
4秒前
自信的叫兽完成签到,获得积分10
4秒前
淡然老太完成签到,获得积分10
5秒前
5秒前
哟哟哟完成签到,获得积分10
6秒前
思源应助背后的机器猫采纳,获得10
6秒前
惠惠发布了新的文献求助10
6秒前
AFEUWOS01完成签到,获得积分20
7秒前
冷傲的樱桃完成签到,获得积分10
7秒前
fighting发布了新的文献求助10
7秒前
zxw发布了新的文献求助10
8秒前
赵赵赵完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
唐人雄完成签到,获得积分10
9秒前
xctdyl1992完成签到,获得积分20
9秒前
9秒前
丰知然应助周凡淇采纳,获得10
9秒前
丰知然应助周凡淇采纳,获得10
9秒前
科研小白花完成签到,获得积分20
10秒前
纯真忆安完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794