Effectiveness of energy separation-based instantaneous frequency estimation for cochlear cepstral features for synthetic and voice-converted spoofed speech detection

计算机科学 瞬时相位 倒谱 语音识别 欺骗攻击 Mel倒谱 滤波器(信号处理) 特征(语言学) 能量(信号处理) 信号(编程语言) 希尔伯特变换 过滤器组 模式识别(心理学) 人工智能 特征提取 计算机视觉 数学 计算机网络 语言学 哲学 统计 程序设计语言
作者
Ankur T. Patil,Hemant A. Patil,Kuldeep Khoria
出处
期刊:Computer Speech & Language [Elsevier BV]
卷期号:72: 101301-101301 被引量:6
标识
DOI:10.1016/j.csl.2021.101301
摘要

In this article, we propose Cochlear Filter Cepstral Coefficient-Instantaneous Frequency feature set using Energy Separation Algorithm (CFCCIF-ESA) feature set to detect the speech synthesis (SS) and voice conversion (VC)-based spoofing attacks. The SS- and VC-based spoof generation techniques predominantly uses the magnitude spectrum information, neglecting the phase information. Hence, SS and VC generated speech signal possess the distorted phase in time or frequency-domain. In this work, we exploit this anomaly in phase to efficiently detect the spoofing attack. Here, instantaneous frequency (IF) is utilized to represent the phase information as IF is nothing but the derivative of unwrapped instantaneous (analytic) phase. The experiments are performed on ASVSpoof-2015 challenge dataset, which is specifically designed to do Spoof Speech Detection (SSD) task for SS and VC. In ASVSpoof-2015 challenge during INTERSPEECH 2015, SSD system designed using Cochlear Filter Cepstral Coefficient-Instantaneous Frequency (CFCCIF) feature set was the relatively best performing system. The CFCCIF feature set composed of the information obtained from the magnitude envelope derived using cochlear filterbank and instantaneous frequency (IF) which is derived from Hilbert transform-based approach. However, Hilbert transform-based estimation requires a speech segment of 10–30 ms and thus, it limits time resolution of IF estimation and hence, defeats the key objective of IF estimation to be able to fit the frequency of a sinusoid (corresponding to a monocomponent signal) locally and almost instantaneously. Energy Separation Algorithm (ESA) is known to accurately estimate the modulation patterns due to their relatively low computational complexity, high time resolution, and instantaneously adapting nature. To that effect, we exploit the ESA instead of Hilbert transform to estimate the IFs of the subband filtered signal using cochlear filterbank. The significant improvement in performance, in particular, relative reduction of 51.21% and 46.87% in EER is observed on development and evaluation subsets, respectively, for CFCCIF-ESA feature set over its CFCCIF counterpart, using Gaussian Mixture Model (GMM)-based classifier. This improvement in the performance indicates that the IFs estimated using ESA-based approach are able to efficiently capture the artefacts produced in the instantaneous phase by the SS- and VC-based spoof signals. Furthermore, experiments are also performed with convolutional neural network (CNN) classifier, which further enhances the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zehua309完成签到,获得积分10
刚刚
长命百岁完成签到 ,获得积分10
刚刚
Echo发布了新的文献求助10
刚刚
Wind发布了新的文献求助10
刚刚
1秒前
1秒前
sb发布了新的文献求助10
1秒前
彭于晏应助SDP采纳,获得10
1秒前
美少叔叔完成签到 ,获得积分10
1秒前
Bear发布了新的文献求助10
2秒前
2秒前
曾雅麟发布了新的文献求助10
2秒前
NoMigraine完成签到,获得积分10
2秒前
慕青应助njzhangyanyang采纳,获得10
3秒前
3秒前
丹青完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
asdasdas发布了新的文献求助10
5秒前
6秒前
6秒前
爆米花应助活泼靖荷采纳,获得10
7秒前
萤火虫发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Mimi发布了新的文献求助10
8秒前
狂野的河马完成签到,获得积分10
8秒前
英姑应助YH采纳,获得10
8秒前
sb完成签到,获得积分10
8秒前
科研通AI2S应助yaohuang采纳,获得10
9秒前
勤奋的松鼠完成签到,获得积分10
9秒前
柠檬籽完成签到,获得积分10
9秒前
xxdn完成签到,获得积分10
9秒前
kermitds完成签到 ,获得积分10
9秒前
Yry发布了新的文献求助10
9秒前
10秒前
背后的鹭洋完成签到,获得积分10
10秒前
橙酒发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060