清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effectiveness of energy separation-based instantaneous frequency estimation for cochlear cepstral features for synthetic and voice-converted spoofed speech detection

计算机科学 瞬时相位 倒谱 语音识别 欺骗攻击 Mel倒谱 滤波器(信号处理) 特征(语言学) 能量(信号处理) 信号(编程语言) 希尔伯特变换 过滤器组 模式识别(心理学) 人工智能 特征提取 计算机视觉 数学 统计 哲学 语言学 程序设计语言 计算机网络
作者
Ankur T. Patil,Hemant A. Patil,Kuldeep Khoria
出处
期刊:Computer Speech & Language [Elsevier]
卷期号:72: 101301-101301 被引量:6
标识
DOI:10.1016/j.csl.2021.101301
摘要

In this article, we propose Cochlear Filter Cepstral Coefficient-Instantaneous Frequency feature set using Energy Separation Algorithm (CFCCIF-ESA) feature set to detect the speech synthesis (SS) and voice conversion (VC)-based spoofing attacks. The SS- and VC-based spoof generation techniques predominantly uses the magnitude spectrum information, neglecting the phase information. Hence, SS and VC generated speech signal possess the distorted phase in time or frequency-domain. In this work, we exploit this anomaly in phase to efficiently detect the spoofing attack. Here, instantaneous frequency (IF) is utilized to represent the phase information as IF is nothing but the derivative of unwrapped instantaneous (analytic) phase. The experiments are performed on ASVSpoof-2015 challenge dataset, which is specifically designed to do Spoof Speech Detection (SSD) task for SS and VC. In ASVSpoof-2015 challenge during INTERSPEECH 2015, SSD system designed using Cochlear Filter Cepstral Coefficient-Instantaneous Frequency (CFCCIF) feature set was the relatively best performing system. The CFCCIF feature set composed of the information obtained from the magnitude envelope derived using cochlear filterbank and instantaneous frequency (IF) which is derived from Hilbert transform-based approach. However, Hilbert transform-based estimation requires a speech segment of 10–30 ms and thus, it limits time resolution of IF estimation and hence, defeats the key objective of IF estimation to be able to fit the frequency of a sinusoid (corresponding to a monocomponent signal) locally and almost instantaneously. Energy Separation Algorithm (ESA) is known to accurately estimate the modulation patterns due to their relatively low computational complexity, high time resolution, and instantaneously adapting nature. To that effect, we exploit the ESA instead of Hilbert transform to estimate the IFs of the subband filtered signal using cochlear filterbank. The significant improvement in performance, in particular, relative reduction of 51.21% and 46.87% in EER is observed on development and evaluation subsets, respectively, for CFCCIF-ESA feature set over its CFCCIF counterpart, using Gaussian Mixture Model (GMM)-based classifier. This improvement in the performance indicates that the IFs estimated using ESA-based approach are able to efficiently capture the artefacts produced in the instantaneous phase by the SS- and VC-based spoof signals. Furthermore, experiments are also performed with convolutional neural network (CNN) classifier, which further enhances the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
uikymh完成签到 ,获得积分0
21秒前
25秒前
Artin完成签到,获得积分10
25秒前
38秒前
40秒前
42秒前
43秒前
45秒前
47秒前
48秒前
胖头鱼please完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Lorin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
老张完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176