Risk Field Model of Driving and Its Application in Modeling Car-Following Behavior

领域(数学) 计算机科学 弹道 行为建模 边距(机器学习) 模拟 人工智能 机器学习 数学 天文 物理 纯数学
作者
Haitian Tan,Guangquan Lu,Miaomiao Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 11605-11620 被引量:50
标识
DOI:10.1109/tits.2021.3105518
摘要

Microscopic modeling of driving behavior is the basis for traffic design and traffic simulation studies and can be applied to automated driving systems to provide human-like decision making. Previous modeling methods can be mainly divided into scenario-based modeling methods and field theory-based modeling methods. Scenario-based models are based on behavior theories that can explain behavioral mechanisms and field theory-based models are convenient for application to different scenarios. Combining two behavior theories and field theory, this paper aims to present a novel method to uniformly model the driving behavior in different scenarios. Risk homeostasis theory and preview-follower theory are used as the theoretical foundation, and field theory is utilized to connect the two behavior theories. A new risk field model is constructed for better coupling these behavior theories. Integrating these theories, this study then develops a subjectively perceived risk quantification method and a trajectory and motion planning model, which are validated using naturalistic data in car-following scenarios. Results show the effectiveness of this method and this model with reference to an effective risk quantification index (safety margin) and in comparison with the classical models (desired safety margin model and intelligent driver model) using naturalistic data in car-following scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11发布了新的文献求助10
2秒前
2秒前
hhhblabla应助欣喜的成败采纳,获得20
2秒前
大方谷梦完成签到 ,获得积分10
3秒前
Listen发布了新的文献求助10
3秒前
神兽下山发布了新的文献求助10
5秒前
九龙飞翔完成签到,获得积分10
5秒前
cxy完成签到,获得积分10
7秒前
Bryan应助旋律采纳,获得10
7秒前
7秒前
微笑发布了新的文献求助10
8秒前
8秒前
JeromineJade发布了新的文献求助10
8秒前
wzx发布了新的文献求助10
9秒前
HarryChan应助蝈蝈采纳,获得10
9秒前
材1完成签到 ,获得积分10
12秒前
所所应助思维隋采纳,获得10
13秒前
阿弥陀佛完成签到,获得积分10
13秒前
默默发布了新的文献求助20
14秒前
MchemG应助LWJ采纳,获得10
14秒前
神兽下山完成签到,获得积分10
14秒前
15秒前
16秒前
annzl发布了新的文献求助10
21秒前
NexusExplorer应助王大炮采纳,获得10
21秒前
Hello应助王大炮采纳,获得10
22秒前
HAG发布了新的文献求助30
22秒前
脑洞疼应助bangbangsh采纳,获得10
23秒前
23秒前
微笑完成签到,获得积分10
23秒前
25秒前
mysci发布了新的文献求助10
25秒前
阿弥陀佛发布了新的文献求助10
25秒前
繁荣的康乃馨应助xiaojinyu采纳,获得10
26秒前
27秒前
28秒前
清云发布了新的文献求助10
29秒前
愤怒的紫完成签到,获得积分10
30秒前
kittency完成签到 ,获得积分10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629