Robust Matching for SAR and Optical Images Using Multiscale Convolutional Gradient Features

计算机科学 合成孔径雷达 人工智能 预处理器 稳健性(进化) 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 雷达成像 卷积神经网络 深度学习 雷达 数学 基因 统计 电信 生物化学 化学
作者
Liang Zhou,Yuanxin Ye,Tengfeng Tang,Ke Nan,Yao Qin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:92
标识
DOI:10.1109/lgrs.2021.3105567
摘要

Image matching is a key preprocessing step for the integrated application of synthetic aperture radar (SAR) and optical images. Due to significant nonlinear intensity differences between such images, automatic matching for them is still quite challenging. Recently, structure features have been effectively applied to SAR-to-optical image matching because of their robustness to nonlinear intensity differences. However, structure features designed by handcraft are limited to achieve further improvement. Accordingly, this letter employs the deep learning technique to refine structure features for improving image matching. First, we extract multiorientated gradient features to depict the structure properties of images. Then, a shallow pseudo-Siamese network is built to convolve the gradient feature maps in a multiscale manner, which produces the multiscale convolutional gradient features (MCGFs). Finally, MCGF is used to achieve image matching by a fast template scheme. MCGF can capture finer common features between SAR and optical images than traditional handcrafted structure features. Moreover, it also can overcome some limitations of current matching methods based on deep learning, which requires solving a huge number of model parameters by a large number of training samples. Two sets of SAR and optical images with different resolutions are used to evaluate the matching performance of MCGF. The experimental results show its advantage over other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助出其东门采纳,获得10
1秒前
畅快自行车完成签到 ,获得积分10
3秒前
4秒前
田様应助希夷采纳,获得10
5秒前
Lucas应助shanbaibai采纳,获得10
5秒前
爆米花应助拉屎很顺畅采纳,获得10
7秒前
tang发布了新的文献求助10
8秒前
糟糕的便当完成签到,获得积分10
8秒前
9秒前
笨笨百招发布了新的文献求助10
9秒前
9秒前
11秒前
NexusExplorer应助H_W采纳,获得10
11秒前
kjkjly发布了新的文献求助20
11秒前
罗媛完成签到,获得积分20
12秒前
共享精神应助陶醉的羞花采纳,获得10
14秒前
隐形曼青应助高斯采纳,获得10
15秒前
16秒前
wuxian发布了新的文献求助10
16秒前
17秒前
阿晨完成签到,获得积分10
18秒前
cassie发布了新的文献求助10
22秒前
Slby567发布了新的文献求助10
22秒前
23秒前
27秒前
urology dog完成签到,获得积分10
27秒前
wt完成签到,获得积分10
27秒前
28秒前
nekoz完成签到,获得积分10
28秒前
29秒前
29秒前
安静秋柔完成签到,获得积分10
30秒前
唠叨的宝马完成签到,获得积分20
31秒前
NexusExplorer应助森林采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
安静秋柔发布了新的文献求助10
32秒前
laifeihong发布了新的文献求助10
33秒前
搜集达人应助Fay采纳,获得10
33秒前
真圆发布了新的文献求助10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707