Robust Matching for SAR and Optical Images Using Multiscale Convolutional Gradient Features

计算机科学 合成孔径雷达 人工智能 预处理器 稳健性(进化) 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 雷达成像 卷积神经网络 深度学习 雷达 数学 基因 统计 电信 生物化学 化学
作者
Liang Zhou,Yuanxin Ye,Tengfeng Tang,Ke Nan,Yao Qin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:92
标识
DOI:10.1109/lgrs.2021.3105567
摘要

Image matching is a key preprocessing step for the integrated application of synthetic aperture radar (SAR) and optical images. Due to significant nonlinear intensity differences between such images, automatic matching for them is still quite challenging. Recently, structure features have been effectively applied to SAR-to-optical image matching because of their robustness to nonlinear intensity differences. However, structure features designed by handcraft are limited to achieve further improvement. Accordingly, this letter employs the deep learning technique to refine structure features for improving image matching. First, we extract multiorientated gradient features to depict the structure properties of images. Then, a shallow pseudo-Siamese network is built to convolve the gradient feature maps in a multiscale manner, which produces the multiscale convolutional gradient features (MCGFs). Finally, MCGF is used to achieve image matching by a fast template scheme. MCGF can capture finer common features between SAR and optical images than traditional handcrafted structure features. Moreover, it also can overcome some limitations of current matching methods based on deep learning, which requires solving a huge number of model parameters by a large number of training samples. Two sets of SAR and optical images with different resolutions are used to evaluate the matching performance of MCGF. The experimental results show its advantage over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Grayball应助包容的剑采纳,获得10
1秒前
董小天天完成签到,获得积分10
1秒前
1秒前
华仔应助qym采纳,获得10
1秒前
琅琊为刃完成签到,获得积分10
2秒前
酷波er应助hhh采纳,获得10
2秒前
2秒前
小巧的香氛完成签到 ,获得积分10
3秒前
3秒前
3秒前
zxcv23发布了新的文献求助10
3秒前
没有名称发布了新的文献求助10
3秒前
4秒前
4秒前
zier完成签到 ,获得积分10
5秒前
阡陌完成签到,获得积分10
5秒前
华仔应助毕业就好采纳,获得10
5秒前
liyi发布了新的文献求助10
5秒前
难过小天鹅完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
6秒前
eee发布了新的文献求助10
6秒前
幸福胡萝卜完成签到,获得积分10
6秒前
7秒前
科研通AI5应助琅琊为刃采纳,获得10
7秒前
7秒前
7秒前
7秒前
寒冷的奇异果完成签到,获得积分10
8秒前
hziyu发布了新的文献求助10
9秒前
9秒前
野性的南蕾完成签到,获得积分10
9秒前
毛毛哦啊发布了新的文献求助10
9秒前
zzzzzk发布了新的文献求助10
9秒前
9秒前
lalala发布了新的文献求助10
10秒前
三里墩头应助oldlee采纳,获得20
10秒前
10秒前
iNk应助西安小小朱采纳,获得10
10秒前
CodeCraft应助西安小小朱采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672