钙钛矿(结构)
钝化
能量转换效率
碘化物
氧化剂
材料科学
化学工程
非阻塞I/O
氧化还原
无机化学
化学
催化作用
纳米技术
图层(电子)
光电子学
有机化学
工程类
作者
Jiaqi Zhang,Juan Long,Zengqi Huang,Jia Yang,Xiang Li,Runying Dai,Wangping Sheng,Licheng Tan,Yiwang Chen
标识
DOI:10.1016/j.cej.2021.131357
摘要
In NiOx-based perovskite solar cells (PVSCs), the interfacial redox reaction between Ni3+ (on the surface of NiOx) and A-site cation salt (MAI in perovskite precursor solution) is invariably ignored. This adverse reaction will generate PbI2-rich hole extraction barriers at the NiOx-perovskite interface, which limits hole transmission and increases charge recombination, thus resulting in open-circuit voltage (Voc) loss. Furthermore, it will accelerate perovskite degradation by deprotonating the precursor amine and oxidizing iodide to interstitial iodine, which induces the severe instability of devices. Herein, a physical separation strategy by introducing a modifier layer to obstruct the detrimental reaction is explored. The results demonstrate that the trimethylolpropane tris(2-methyl-1-aziridinepropionate) (SaC-100) depositing onto NiOx can suppress the reaction between Ni3+ and MAI to endow the improvement of conductivity and reduction of interfacial defects, thus reducing Voc loss and enhancing device stability. Moreover, the interfacial energy level alignment and the morphology of perovskite are also optimized. As a result, the PVSCs device based on NiOx/SaC-100 presents the best power conversion efficiency (PCE) of 20.21% with a superior Voc value of 1.12 V. Furthermore, the device shows better light and thermal stability because of the hindering effect and defect passivation effect of SaC-100.
科研通智能强力驱动
Strongly Powered by AbleSci AI