Estimating crown width in degraded forest: A two-level nonlinear mixed-effects crown width model for Dacrydium pierrei and Podocarpus imbricatus in tropical China

胸径 牙冠(牙科) 罗汉松 环境科学 林业 混合模型 农林复合经营 生态学 数学 生物 地理 统计 医学 花粉 牙科
作者
Qiao Chen,Guangshuang Duan,Qingwang Liu,Qiaolin Ye,Ram P. Sharma,Yongfu Chen,Haodong Liu,Liyong Fu
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:497: 119486-119486 被引量:24
标识
DOI:10.1016/j.foreco.2021.119486
摘要

Tropical forest degradation makes a major contribution to greenhouse gas emission. Crown width (CW) is one of the important predictors in forest growth and yield models that provide basic data for assessment of forest degradation. Precise method of estimating tree crown for two tropical tree species (Dacrydium pierrei Hickel and Podocarpus imbricatus Bl), which are the major species in the degraded coniferous mixed forests in the tropical China, is necessary. These forests play a pivotal role in maintaining ecosystem functions, but are under the threat of severe degradation in recent years, and none of the studies has provided focus to these forests. We developed a nonlinear mixed-effects CW model using the permanent sample plot data acquired from D. pierrei and P. imbricatus forests. A number of tree- and stand-level variables were evaluated for their potential contribution to the CW variations, and included only highly significant ones in the model. The random effects at the levels of both sample plots and stands with different site quality class (blocks) were included in the CW model through mixed-effect modeling, and resulting model is therefore a two-level nonlinear mixed-effects model. Leave-one-out cross-validation was applied to evaluate the models. Among several predictor variables, diameter at breast height (DBH), height-to-DBH ratio (HDR), and height to crown base (HCB) contributed relatively highly to the CW variations. Dummy variable was introduced into the model to differentiate CW variations of two tree species. Correlations of CW and predictor variables significantly decreased when random effects at both the block and sample plot levels were included. We calibrated the nonlinear mixed effects CW model following the empirical best linear unbiased prediction theory, using four strategies of selecting CW trees per sample plot (largest, medium-sized, smallest trees and randomly selected trees) and fifteen sample sizes (one to fifteen trees). The prediction accuracy increased with increasing number of trees per sample plot, except the smallest trees, but the largest increase occurred with three largest trees used in calibration. This article emphasized more on modeling methodology, which can be applied to construct CW models for any forest elsewhere including degraded forest in the tropics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
forever完成签到,获得积分10
1秒前
1秒前
1秒前
Whisper完成签到 ,获得积分10
1秒前
lebron完成签到,获得积分10
1秒前
给我一颗糖完成签到,获得积分10
1秒前
霁星河完成签到,获得积分10
2秒前
heyan完成签到,获得积分10
2秒前
KingYugene完成签到,获得积分10
2秒前
嗯嗯完成签到 ,获得积分10
2秒前
KX2024完成签到,获得积分10
2秒前
可爱的函函应助轻松绮兰采纳,获得10
2秒前
2秒前
bju发布了新的文献求助10
3秒前
fhl完成签到,获得积分10
3秒前
Xieyusen完成签到,获得积分10
3秒前
4秒前
4秒前
wfafggga发布了新的文献求助10
4秒前
4秒前
yuki发布了新的文献求助10
4秒前
咕_完成签到 ,获得积分10
4秒前
安谢完成签到,获得积分10
5秒前
miro完成签到,获得积分10
5秒前
科研专家完成签到 ,获得积分10
5秒前
无私的芹应助Liu采纳,获得30
5秒前
晓筠完成签到,获得积分10
5秒前
愫浅完成签到 ,获得积分10
5秒前
何波完成签到,获得积分20
6秒前
袁同学完成签到,获得积分10
6秒前
冰雪人发布了新的文献求助10
6秒前
蒋若风完成签到,获得积分10
6秒前
crescendo完成签到,获得积分10
7秒前
7秒前
keyana25完成签到,获得积分10
7秒前
火星天完成签到,获得积分10
9秒前
刚果王子发布了新的文献求助20
9秒前
替我活着完成签到,获得积分10
9秒前
淡淡孤丝完成签到,获得积分20
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051