Dense Nested Attention Network for Infrared Small Target Detection

计算机科学 联营 杂乱 目标检测 人工智能 模式识别(心理学) 集合(抽象数据类型) 交叉口(航空) 深度学习 雷达 电信 工程类 程序设计语言 航空航天工程
作者
Boyang Li,Chao Xiao,Longguang Wang,Yingqian Wang,Zaiping Lin,Miao Li,Wei An,Yulan Guo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1745-1758 被引量:329
标识
DOI:10.1109/tip.2022.3199107
摘要

Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds. With the advances of deep learning, CNN-based methods have yielded promising results in generic object detection due to their powerful modeling capability. However, existing CNN-based methods cannot be directly applied to infrared small targets since pooling layers in their networks could lead to the loss of targets in deep layers. To handle this problem, we propose a dense nested attention network (DNA-Net) in this paper. Specifically, we design a dense nested interactive module (DNIM) to achieve progressive interaction among high-level and low-level features. With the repetitive interaction in DNIM, the information of infrared small targets in deep layers can be maintained. Based on DNIM, we further propose a cascaded channel and spatial attention module (CSAM) to adaptively enhance multi-level features. With our DNA-Net, contextual information of small targets can be well incorporated and fully exploited by repetitive fusion and enhancement. Moreover, we develop an infrared small target dataset (namely, NUDT-SIRST) and propose a set of evaluation metrics to conduct comprehensive performance evaluation. Experiments on both public and our self-developed datasets demonstrate the effectiveness of our method. Compared to other state-of-the-art methods, our method achieves better performance in terms of probability of detection ( Pd ), false-alarm rate ( Fa ), and intersection of union ( IoU ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Biye采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
淡然篮球发布了新的文献求助10
4秒前
FashionBoy应助Aline采纳,获得10
4秒前
wanci应助阳光男孩采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
伶俐碧萱完成签到 ,获得积分10
5秒前
5秒前
6秒前
王小磊发布了新的文献求助10
6秒前
7秒前
天天开心完成签到,获得积分10
7秒前
RockLee发布了新的文献求助10
7秒前
看不了一点文献完成签到,获得积分10
8秒前
研友_pnx37L发布了新的文献求助10
8秒前
yc完成签到,获得积分10
8秒前
8秒前
暮寻屿苗完成签到 ,获得积分10
9秒前
9秒前
lizi发布了新的文献求助10
9秒前
9秒前
万能图书馆应助时尚俊驰采纳,获得10
9秒前
qianlan发布了新的文献求助10
10秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745349
求助须知:如何正确求助?哪些是违规求助? 3288288
关于积分的说明 10058133
捐赠科研通 3004507
什么是DOI,文献DOI怎么找? 1649669
邀请新用户注册赠送积分活动 785484
科研通“疑难数据库(出版商)”最低求助积分说明 751108