Contaminant detection in pistachio nuts by different classification methods applied to short-wave infrared hyperspectral images

主成分分析 高光谱成像 线性判别分析 数学 多元统计 人工智能 模式识别(心理学) 化学计量学 偏最小二乘回归 计算机科学 统计 机器学习
作者
Giuseppe Bonifazi,Giuseppe Capobianco,Riccardo Gasbarrone,Silvia Serranti
出处
期刊:Food Control [Elsevier]
卷期号:130: 108202-108202 被引量:30
标识
DOI:10.1016/j.foodcont.2021.108202
摘要

Abstract In this paper different multivariate classification methods applied to hyperspectral images acquired in the short-wave infrared range (SWIR: 1000–2500 nm) were evaluated for quality control of pistachio nuts. In more detail, the detection of contaminants in edible pistachio products was assessed. Six material classes (i.e. edible and inedible pistachio nuts, pistachio shells, pistachio husks, twigs, and stones) were investigated. Samples were divided into two groups: a training set and a validation set. The acquired hyperspectral images were first explored by Principal Component Analysis (PCA). The following multivariate classification methods were selected in order to verify and compare their efficiency and robustness: Partial Least Squares-Discriminant Analysis (PLS-DA), Principal Component Analysis with Discriminant Analysis (PCA-DA), Principal Component Analysis with k-Nearest Neighbor (PCA-kNN), and Classification And Regression Tree (CART). The classification results obtained for the four models in terms of prediction maps and values of the performance parameters (Sensitivity, Specificity, and Efficiency) were good in most cases. The main misclassification errors occur between ‘Edible pistachio’ and ‘Inedible pistachio’ classes and between ‘Pistachio shell’, ‘Pistachio husk’, and ‘Twig’ classes, confirming the similar spectral features of such classes observed by PCA. PCA-kNN provided the best discrimination ability in prediction, with Efficiency values from 0.92 to 0.99, followed by PLS-DA and PCA-DA. The performance of CART decreased from the calibration to the validation phase. The overall results demonstrated that SWIR-HSI technology, coupled with multivariate analysis modeling, is a promising approach to develop both ‘off-line’ and ‘on-line’ fast, reliable and robust contaminant detection in edible pistachios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzx完成签到,获得积分10
刚刚
执着的清炎完成签到,获得积分10
1秒前
笃定发布了新的文献求助10
1秒前
for_abSCI发布了新的文献求助10
1秒前
fff发布了新的文献求助10
4秒前
weiwei完成签到,获得积分10
4秒前
沉默初雪完成签到,获得积分10
5秒前
zhangxinan完成签到,获得积分10
6秒前
9秒前
CodeCraft应助节节高采纳,获得10
10秒前
10秒前
852应助Olsters采纳,获得10
12秒前
12秒前
狗咚嘻完成签到,获得积分10
13秒前
加菲丰丰举报yiling求助涉嫌违规
14秒前
15秒前
cctv18应助笃定采纳,获得10
15秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
武雨寒发布了新的文献求助10
16秒前
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
田様应助陶珊采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
萧水白应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
小郭子应助科研通管家采纳,获得20
17秒前
17秒前
17秒前
小罗发布了新的文献求助10
18秒前
神勇的樱桃完成签到,获得积分10
18秒前
18秒前
double ting完成签到,获得积分10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254356
求助须知:如何正确求助?哪些是违规求助? 2896550
关于积分的说明 8293206
捐赠科研通 2565501
什么是DOI,文献DOI怎么找? 1393074
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629946