有界函数
升程阶跃函数
热电效应
物理
热导率
数学
西格玛
凝聚态物理
功勋
分布函数
分布(数学)
组合数学
数学分析
数学物理
量子力学
光学
出处
期刊:Physical review
日期:2021-11-15
卷期号:104 (18)
被引量:9
标识
DOI:10.1103/physrevb.104.184301
摘要
With the goal of maximizing the thermoelectric (TE) figure of merit $ZT$, Mahan and Sofo [Proc. Natl. Acad. Sci. USA 93, 7436 (1996)] found that the optimal transport distribution (TD) is a $\ensuremath{\delta}$ function. Materials, however, have TDs that appear to always be finite and nondiverging. Motivated by this observation, this study focuses on deriving what is the optimal bounded TD, which is determined to be a boxcar function for $ZT$ and a Heaviside function for power factor. From these optimal TDs, upper limits on $ZT$ and power factor are obtained; the maximum $ZT$ scales with ${\mathrm{\ensuremath{\Sigma}}}_{\mathrm{max}}T/{\ensuremath{\kappa}}_{l}$, where ${\mathrm{\ensuremath{\Sigma}}}_{\mathrm{max}}$ is the TD magnitude and ${\ensuremath{\kappa}}_{l}$ is the lattice thermal conductivity. These results help establish practical upper limits on the performance of TE materials and provide target TDs to guide band and/or scattering engineering strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI