A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

消费(社会学) 计算机科学 比例(比率) 人工智能 深度学习 工业工程 计量经济学 工程类 经济 地理 地图学 社会科学 电气工程 社会学
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:72
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助兑现采纳,获得10
刚刚
自由傲晴完成签到 ,获得积分10
1秒前
陶醉西牛发布了新的文献求助10
2秒前
fox发布了新的文献求助10
2秒前
妙旋克里斯完成签到,获得积分10
2秒前
2秒前
纪思奇完成签到 ,获得积分10
3秒前
李朋发布了新的文献求助10
3秒前
谦让白秋完成签到,获得积分10
3秒前
4秒前
4秒前
bubbull完成签到,获得积分10
5秒前
CipherSage应助一群牛采纳,获得10
5秒前
5秒前
Fbin完成签到,获得积分10
6秒前
木棉完成签到,获得积分10
6秒前
龙仔子完成签到,获得积分10
6秒前
6秒前
轻松土豆关注了科研通微信公众号
7秒前
8秒前
訣别完成签到 ,获得积分10
8秒前
fox完成签到,获得积分10
8秒前
科研通AI5应助asd采纳,获得10
8秒前
8秒前
韩飞完成签到,获得积分20
9秒前
9秒前
9秒前
龙仔子发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
淡淡朝阳完成签到,获得积分10
10秒前
补药学习发布了新的文献求助10
10秒前
上官若男应助专一的书雪采纳,获得10
10秒前
10秒前
轻松板栗关注了科研通微信公众号
10秒前
蓝胖子发布了新的文献求助10
11秒前
11秒前
11秒前
kyan完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403