亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

消费(社会学) 计算机科学 比例(比率) 人工智能 深度学习 工业工程 计量经济学 工程类 经济 地理 地图学 社会科学 电气工程 社会学
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:80
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
JinguoChen发布了新的文献求助10
42秒前
Percy完成签到 ,获得积分10
1分钟前
从容芮发布了新的文献求助1600
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
mark163发布了新的文献求助10
4分钟前
LSYLIZ发布了新的文献求助10
4分钟前
5分钟前
5分钟前
PJT417发布了新的文献求助10
5分钟前
PJT417完成签到,获得积分20
6分钟前
拱野猪的菜完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
郜郜嗳发布了新的文献求助10
7分钟前
yueyueyahoo完成签到,获得积分10
7分钟前
汉堡包应助郜郜嗳采纳,获得10
7分钟前
郜郜嗳完成签到,获得积分20
7分钟前
英姑应助知性的十三采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
是三金呀发布了新的文献求助10
8分钟前
知性的十三完成签到,获得积分10
8分钟前
是三金呀完成签到,获得积分20
8分钟前
大模型应助是三金呀采纳,获得10
9分钟前
Fairy完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
dongmei发布了新的文献求助10
9分钟前
10分钟前
yoroll发布了新的文献求助10
10分钟前
可爱霖霖完成签到,获得积分10
10分钟前
10分钟前
obedVL完成签到,获得积分10
10分钟前
313发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133247
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625