A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

消费(社会学) 计算机科学 比例(比率) 人工智能 深度学习 工业工程 计量经济学 工程类 经济 地理 社会科学 地图学 电气工程 社会学
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:72
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
唯梦完成签到 ,获得积分10
2秒前
詹姆斯哈登完成签到,获得积分10
5秒前
李健应助名字不好起采纳,获得10
7秒前
万历完成签到,获得积分10
7秒前
7秒前
林卷卷完成签到,获得积分10
8秒前
大葱鸭发布了新的文献求助10
10秒前
11秒前
李健应助南山无梅落采纳,获得10
11秒前
15秒前
赘婿应助大橙子采纳,获得10
17秒前
24秒前
我是大学霸完成签到,获得积分10
25秒前
随风完成签到,获得积分0
25秒前
yi完成签到 ,获得积分10
26秒前
lin完成签到,获得积分10
27秒前
huahua完成签到 ,获得积分10
27秒前
大橙子发布了新的文献求助10
30秒前
小黑完成签到,获得积分10
33秒前
ZY完成签到 ,获得积分10
36秒前
阿士大夫完成签到,获得积分0
36秒前
chai完成签到,获得积分10
36秒前
GUO完成签到,获得积分10
37秒前
111完成签到 ,获得积分10
38秒前
Llllll发布了新的文献求助200
39秒前
天下无马完成签到 ,获得积分10
40秒前
大葱鸭完成签到,获得积分10
40秒前
ahh完成签到 ,获得积分10
42秒前
辛勤安梦完成签到,获得积分10
43秒前
Akjan完成签到,获得积分10
46秒前
查查make完成签到,获得积分10
50秒前
Jasper应助大橙子采纳,获得10
51秒前
GUO发布了新的文献求助30
52秒前
三石完成签到 ,获得积分10
52秒前
跳跃的白云完成签到 ,获得积分10
53秒前
酷酷亦寒完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
57秒前
Blaseaka完成签到 ,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022