A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

消费(社会学) 计算机科学 比例(比率) 人工智能 深度学习 工业工程 计量经济学 工程类 经济 地理 社会科学 地图学 电气工程 社会学
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:72
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
journey完成签到 ,获得积分10
刚刚
3秒前
乖猫要努力应助潇湘雪月采纳,获得10
6秒前
一行发布了新的文献求助10
6秒前
storm完成签到,获得积分10
9秒前
HOPE完成签到,获得积分20
10秒前
Singularity应助Xiaoyang采纳,获得10
12秒前
ding应助快乐一江采纳,获得10
12秒前
13秒前
步一完成签到,获得积分10
14秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
dongjy应助科研通管家采纳,获得150
18秒前
Owen应助科研通管家采纳,获得10
18秒前
fd163c应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
愉快的牛氓完成签到 ,获得积分10
20秒前
恋雅颖月应助潇湘雪月采纳,获得10
22秒前
24秒前
传奇3应助热情青亦采纳,获得10
25秒前
CodeCraft应助夕沫采纳,获得10
26秒前
江江发布了新的文献求助10
29秒前
斯文败类应助sirhai采纳,获得10
31秒前
只谈风月完成签到,获得积分10
32秒前
顾矜应助哈哈呵采纳,获得10
33秒前
科研助手6应助风中的南风采纳,获得10
33秒前
小马甲应助呆瓜采纳,获得10
33秒前
34秒前
热情青亦完成签到,获得积分10
34秒前
34秒前
35秒前
35秒前
lw完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174