A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

计算机科学 动态时间归整 人工智能 荷载剖面图 人工神经网络 深度学习 波动性(金融) 机器学习 实时计算 计量经济学 工程类 经济 电气工程
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:307: 118197-118197 被引量:57
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evan完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
方赫然应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
Susam应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
耶耶发布了新的文献求助10
3秒前
猫咪老师应助科研通管家采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
温润而清应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
4秒前
4秒前
橘色天际线完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
善学以致用应助SUN采纳,获得10
5秒前
Minh23发布了新的文献求助10
6秒前
8秒前
yang发布了新的文献求助10
8秒前
tt发布了新的文献求助10
10秒前
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242929
求助须知:如何正确求助?哪些是违规求助? 2887037
关于积分的说明 8245962
捐赠科研通 2555600
什么是DOI,文献DOI怎么找? 1383752
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625