亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior

消费(社会学) 计算机科学 比例(比率) 人工智能 深度学习 工业工程 计量经济学 工程类 经济 地理 地图学 社会科学 电气工程 社会学
作者
Wangwang Yang,Jing Shi,Shujian Li,Zhaofang Song,Zitong Zhang,Zexu Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:307: 118197-118197 被引量:80
标识
DOI:10.1016/j.apenergy.2021.118197
摘要

With the growth of residential load and the popularity of intelligent devices, resident users have become important target customers for demand response (DR). However, due to the strong volatility of individual household load and the large difference in user’s behavior, the accuracy of residential load forecasting is generally low and the forecasting effect is unstable, which is not conductive to the implementation of DR. To improve the accuracy of residential load forecasting, this paper proposes a combined deep learning load forecasting model considering multi-time scale electricity consumption behavior of single household resident user to achieve high-accuracy and stable load forecasting. Aiming at the electricity consumption behavior, the multi-time scale similarity analysis is carried out. For the time scale of one year, Normalized Dynamic Time Warping (N-DTW) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to analyze the significance of single user's long-term electricity consumption behavior. For the time scale of 7 days, behavior similarity is used to analyze the consistency of single user's short-term electricity consumption behavior. Then, Mutual Information (MI) and Principal Component Analysis (PCA) are used to select features and reduce dimensions of multi-dimensional weather influencing factors, so as to avoid the interference of irrelevant factors and improve the calculation speed. On this basis, combined with Back Propagation (BP) neural network, Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural network, a combined deep learning network load forecasting model (Co-LSTM) is constructed by using multi-model and multi-variable method to achieve stable and high-accuracy load forecasting. Finally, based on the actual load data from the American Pecan Street Energy Project, the forecasting accuracy of the proposed model of resident user is evaluated. From the performance of load forecasting for 42 target users, the minimum, maximum and average Mean Arctangent Absolute Percentage Error (MAAPE) of Co-LSTM is 18.70%, 45.95% and 31.20% (the average MAAPE is 4.97% less than the traditional LSTM model) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
GGGrigor完成签到,获得积分10
10秒前
呼延水云发布了新的文献求助10
11秒前
15秒前
乐正怡完成签到 ,获得积分0
24秒前
酷酷煎蛋完成签到,获得积分20
30秒前
Daemon完成签到,获得积分10
31秒前
37秒前
小奋青完成签到 ,获得积分10
47秒前
51秒前
琪qi完成签到 ,获得积分10
55秒前
1分钟前
宋子虎完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助悬壶济世之骨科采纳,获得10
1分钟前
baijiangtao完成签到,获得积分10
1分钟前
1分钟前
Lujiokh发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
在水一方应助Ximao1008采纳,获得10
2分钟前
wanci应助111采纳,获得10
2分钟前
明理夏波发布了新的文献求助10
2分钟前
平淡如天完成签到,获得积分10
2分钟前
落叶捎来讯息完成签到 ,获得积分10
2分钟前
baijiangtao发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ximao1008完成签到,获得积分20
2分钟前
2分钟前
Ximao1008发布了新的文献求助10
2分钟前
唐泽雪穗应助注恤明采纳,获得10
2分钟前
Ava应助缓慢的烨伟采纳,获得10
2分钟前
leo应助解颜采纳,获得10
2分钟前
2分钟前
Daemon发布了新的文献求助10
2分钟前
脑洞疼应助明理夏波采纳,获得10
3分钟前
天天快乐应助淡定的过客采纳,获得10
3分钟前
3分钟前
研友_8RyzBZ完成签到,获得积分20
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137062
求助须知:如何正确求助?哪些是违规求助? 4337019
关于积分的说明 13510941
捐赠科研通 4175432
什么是DOI,文献DOI怎么找? 2289427
邀请新用户注册赠送积分活动 1289992
关于科研通互助平台的介绍 1231455