Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review

缺少数据 插补(统计学) 计算机科学 机器学习 人工智能 预测建模 数据挖掘 统计 数学
作者
Steven W J Nijman,Artuur Leeuwenberg,Inés Beekers,I Verkouter,JJL Jacobs,ML Bots,Folkert W. Asselbergs,KGM Moons,Thomas P. A. Debray
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:142: 218-229 被引量:105
标识
DOI:10.1016/j.jclinepi.2021.11.023
摘要

ObjectivesMissing data is a common problem during the development, evaluation, and implementation of prediction models. Although machine learning (ML) methods are often said to be capable of circumventing missing data, it is unclear how these methods are used in medical research. We aim to find out if and how well prediction model studies using machine learning report on their handling of missing data.Study design and settingWe systematically searched the literature on published papers between 2018 and 2019 about primary studies developing and/or validating clinical prediction models using any supervised ML methodology across medical fields. From the retrieved studies information about the amount and nature (e.g. missing completely at random, potential reasons for missingness) of missing data and the way they were handled were extracted.ResultsWe identified 152 machine learning-based clinical prediction model studies. A substantial amount of these 152 papers did not report anything on missing data (n = 56/152). A majority (n = 96/152) reported details on the handling of missing data (e.g., methods used), though many of these (n = 46/96) did not report the amount of the missingness in the data. In these 96 papers the authors only sometimes reported possible reasons for missingness (n = 7/96) and information about missing data mechanisms (n = 8/96). The most common approach for handling missing data was deletion (n = 65/96), mostly via complete-case analysis (CCA) (n = 43/96). Very few studies used multiple imputation (n = 8/96) or built-in mechanisms such as surrogate splits (n = 7/96) that directly address missing data during the development, validation, or implementation of the prediction model.ConclusionThough missing values are highly common in any type of medical research and certainly in the research based on routine healthcare data, a majority of the prediction model studies using machine learning does not report sufficient information on the presence and handling of missing data. Strategies in which patient data are simply omitted are unfortunately the most often used methods, even though it is generally advised against and well known that it likely causes bias and loss of analytical power in prediction model development and in the predictive accuracy estimates. Prediction model researchers should be much more aware of alternative methodologies to address missing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只爱医学不爱你完成签到 ,获得积分10
刚刚
孙栋完成签到,获得积分10
2秒前
Denning完成签到,获得积分10
5秒前
9秒前
hopen完成签到 ,获得积分10
15秒前
田様应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
InfoNinja应助科研通管家采纳,获得50
18秒前
研究新人完成签到,获得积分10
18秒前
岁月如酒应助科研通管家采纳,获得10
18秒前
庄怀逸完成签到 ,获得积分10
20秒前
1111发布了新的文献求助10
23秒前
重要山彤完成签到 ,获得积分10
28秒前
L_x完成签到 ,获得积分10
29秒前
传奇3应助珂珂子采纳,获得10
29秒前
小董完成签到,获得积分10
30秒前
Manzia完成签到,获得积分10
42秒前
鞑靼完成签到 ,获得积分10
44秒前
沙里飞完成签到 ,获得积分10
55秒前
jensen完成签到,获得积分10
55秒前
爱静静应助pping采纳,获得10
1分钟前
世间安得双全法完成签到,获得积分0
1分钟前
平常山河完成签到 ,获得积分10
1分钟前
香蕉觅云应助苗条的子默采纳,获得10
1分钟前
www完成签到 ,获得积分10
1分钟前
66完成签到,获得积分10
1分钟前
matt完成签到,获得积分10
1分钟前
Smoiy完成签到 ,获得积分10
1分钟前
miemie66完成签到,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
结实的德地完成签到,获得积分10
1分钟前
xiaofu完成签到,获得积分10
1分钟前
紫罗兰花海完成签到 ,获得积分10
1分钟前
tjyiia发布了新的文献求助50
1分钟前
碧蓝丹烟完成签到 ,获得积分10
1分钟前
ORANGE完成签到,获得积分10
1分钟前
c_123完成签到 ,获得积分10
1分钟前
水星完成签到 ,获得积分10
1分钟前
牟翎完成签到,获得积分10
1分钟前
认真丹亦完成签到 ,获得积分10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910592
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296