Optimizing the interface engineering and structural stability of nickel-rich layered oxide cathode by dual-function modification

阳极 材料科学 电解质 锂(药物) 电化学 氧化物 阴极 化学工程 涂层 兴奋剂 纳米技术 电极 化学 冶金 光电子学 物理化学 工程类 内分泌学 医学
作者
Ziyi Zhu,Jianguo Duan,Jufeng Zhang,Siyuan Zhou,Xuesong Huang,Qi Meng,Peng Dong,Yingjie Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:430: 132908-132908 被引量:27
标识
DOI:10.1016/j.cej.2021.132908
摘要

Nickel-rich layered LiNi1-x-yCoxMnyO2 (1-x-y ≥ 0.6) cathode material has the advantage of high energy density, which is one of the hot topics in the field of new energy technology. Nonetheless, the nickel-rich layered oxide has serious interfacial and structural problems, resulting in unsatisfactory cycle performance and safety performance, which hinders large scale applications in the field of lithium-ion batteries. Here, a double modified LiNi0.82Co0.13Mn0.05O2 cathode material was prepared by a simple synthesis process with Zr4+ doping and LiBO2 coating, and has shown outstanding electrochemical performance. The initial discharge specific capacity is 200.8 mAh/g at 0.1C, and the capacity retention rate is also as high as 90.8% after 250 cycles at 1C. In-situ X-ray diffraction tests and density-functional theory calculations further reveal that the bulk Zr4+ doping is not only beneficial to maintain the stability of the crystal structure, but also to optimize the energy band structure of the material and increase the migration rate of lithium-ion. Moreover, the LiBO2 coating on the surface can effectively prevent the active material from directly contacting the electrolyte, and inhibit side reactions. The concept of “thick electrode” is introduced, and assembled into a pouch-type full cell with graphite as the anode, the high energy density is 302.8 Wh/kg and the retention rate after 1000 cycles is more than 80%. The safety performance test also shows that the nickel-rich layered oxide cathode has broad commercial potential application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Djtc发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
cc完成签到,获得积分10
3秒前
yidi01完成签到,获得积分10
5秒前
CipherSage应助淡淡采纳,获得10
5秒前
桐桐应助酸奶鱼采纳,获得10
6秒前
田攀发布了新的文献求助10
6秒前
wsj发布了新的文献求助10
6秒前
Cc发布了新的文献求助10
6秒前
shiiiny发布了新的文献求助10
7秒前
幽默涟妖发布了新的文献求助10
7秒前
8秒前
cc发布了新的文献求助10
9秒前
科研通AI6应助hzs采纳,获得10
9秒前
故渊丶完成签到 ,获得积分10
9秒前
Zzzzzzz发布了新的文献求助10
10秒前
情怀应助潇洒的如松采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
熊尼完成签到,获得积分20
12秒前
打打应助mdjinij采纳,获得10
12秒前
13秒前
李博士发布了新的文献求助10
13秒前
哈哈应助叶夜南采纳,获得10
14秒前
15秒前
小翼完成签到,获得积分10
17秒前
哈哈应助叶夜南采纳,获得10
17秒前
18秒前
18秒前
小二郎应助shiiiny采纳,获得10
20秒前
391X小king发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570