材料科学
碳化硅
二极管
MOSFET
叠加断层
光电子学
晶体管
位错
半导体
硅
PIN二极管
电气工程
电压
复合材料
工程类
作者
Kumiko Konishi,Ryusei Fujita,Keisuke Kobayashi,Akio Yoneyama,Kotaro Ishiji,Hiroyuki Okino,Akio Shima,Toru Ujihara
摘要
We developed an in-operando x-ray topography method for dynamically visualizing single Shockley-type stacking fault (1SSF) expansion motions in silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) during their operations and investigated the effect of the operating condition applied to the body diodes in SiC MOSFETs on dislocation glide velocity. In-operando x-ray topography observations were carried out in reflection geometry, and a high-resolution x-ray camera was used as a detector to record topographies dynamically. The sequence of 1SSF expansion motions in the SiC MOSFETs was observed at a high resolution of 1 s in x-ray topographies, which is sufficient to analyze the dislocation glide velocity of a 1SSF expansion. The observation results of changing the forward current density applied to the body diodes in SiC MOSFETs revealed that each triangular and bar-shaped 1SSF expands at different forward current densities. The 1SSF expansion timings also differed, even in the same chip under the same current density. The dislocation glide velocity of each expanded 1SSF in SiC MOSFETs was extracted, and it increased with the forward current density. Our method enables the dynamic visualization of bipolar degradation in SiC MOSFETs during their operations, and we can accurately obtain the information of when, where, and which 1SSF expands in a SiC MOSFET.
科研通智能强力驱动
Strongly Powered by AbleSci AI