Location strategies of spinoff entrants: Implications of clustering and staying close to the parents

集聚经济 溢出效应 产品(数学) 业务 营销 半导体工业 星团(航天器) 产业组织 竞争优势 经济 微观经济学 工程类 计算机科学 制造工程 数学 程序设计语言 几何学
作者
Jarrod Humphrey,Gwendolyn Kuo-fang Lee
出处
期刊:Proceedings - Academy of Management [Academy of Management]
卷期号:2021 (1): 14894-14894 被引量:1
标识
DOI:10.5465/ambpp.2021.14894abstract
摘要

The research on agglomeration posits that co-locating in a cluster with industry rivals benefits the firm because of its proximity to resources including suppliers, labor, and knowledge spillover from rivals. Although it’s often assumed that co-location benefits new entrants, more recent research finds that stronger entrants gain less from co-location. Spinoff entrants—the organizational descendants of ongoing established firms—are comparatively stronger entrants because of the product, market, and industry knowledge they inherit from their parents. They may gain less from co-location, because the competitive pressures exerted by their parents and other industry rivals are higher when they are more proximate. For the spinoff entrants that locate farther away, the inheritance from their parents may be portable and thus do not decay with distance. Our paper examines the performance implications of whether spinoff entrants are located inside a cluster and staying close to their parents. Specifically, we conduct an event history analysis estimating the amount of time it takes a spinoff entrant to reach six entrepreneurial milestones. We find that being located inside a cluster and staying close to the parents are beneficial to spinoffs only when the industry has a single dominant cluster, as we observe in the semiconductor industry. When the industry has many clusters widely dispersed across the country, as we observe in the pharmaceutical industry, co-location is associated with worse performance. Our findings suggest that the dispersion of clusters in an industry is one condition where the assumption about new entrants benefiting from co-location is invalid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JerryZ发布了新的文献求助10
1秒前
1秒前
wewe发布了新的文献求助30
4秒前
昵称发布了新的文献求助10
4秒前
5秒前
hdd完成签到,获得积分10
5秒前
irisjlj发布了新的文献求助10
5秒前
有人应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
SCINEXUS应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
SCINEXUS应助科研通管家采纳,获得20
7秒前
子夜应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
Owen应助科研通管家采纳,获得10
8秒前
SCINEXUS应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助heidi采纳,获得10
9秒前
浙江嘉兴发布了新的文献求助10
9秒前
12秒前
P4完成签到 ,获得积分10
13秒前
mimicyang发布了新的文献求助10
13秒前
13秒前
14秒前
搞怪白易发布了新的文献求助10
15秒前
浦肯野应助irisjlj采纳,获得10
16秒前
迟大猫应助通~采纳,获得10
18秒前
20秒前
21秒前
木槿花难开完成签到,获得积分10
22秒前
小巧念寒完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851