计算卸载
计算机科学
强化学习
边缘计算
移动边缘计算
资源配置
计算
服务器
最优化问题
数学优化
理论计算机科学
人工智能
算法
GSM演进的增强数据速率
数学
计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal
[Institute of Electrical and Electronics Engineers]
日期:2022-01-15
卷期号:9 (2): 1517-1530
被引量:126
标识
DOI:10.1109/jiot.2021.3091142
摘要
Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
科研通智能强力驱动
Strongly Powered by AbleSci AI