Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 服务器 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:126
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jing完成签到 ,获得积分10
2秒前
nyzcc完成签到,获得积分10
2秒前
2秒前
2秒前
博林大师发布了新的文献求助10
3秒前
Lsyii完成签到,获得积分10
5秒前
mxq完成签到,获得积分10
5秒前
12334发布了新的文献求助10
5秒前
西岭发布了新的文献求助10
5秒前
宁少爷应助元谷雪采纳,获得30
6秒前
6秒前
慕昊强发布了新的文献求助20
6秒前
7秒前
单纯的巧荷完成签到,获得积分10
7秒前
科研通AI2S应助sober采纳,获得10
7秒前
Lsyii发布了新的文献求助10
8秒前
MRzzzzz发布了新的文献求助50
9秒前
9秒前
9秒前
庞威完成签到 ,获得积分10
10秒前
汐月给汐月的求助进行了留言
10秒前
11秒前
ShowMaker举报正在通话中求助涉嫌违规
13秒前
13秒前
14秒前
16秒前
Rich_WH发布了新的文献求助10
16秒前
16秒前
LL77完成签到,获得积分10
17秒前
小王完成签到,获得积分10
17秒前
LYL完成签到,获得积分10
17秒前
ding应助YY采纳,获得10
19秒前
20秒前
21秒前
23秒前
24秒前
小二郎应助顺sci采纳,获得10
25秒前
25秒前
薰硝壤应助xiaoxiao采纳,获得10
28秒前
大模型应助Rich_WH采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449