Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:226
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助落尘采纳,获得10
刚刚
刚刚
1秒前
燕真完成签到,获得积分10
1秒前
何公主发布了新的文献求助10
1秒前
1秒前
蕪菑完成签到 ,获得积分10
1秒前
YL发布了新的文献求助10
2秒前
2秒前
Blueyi发布了新的文献求助10
2秒前
桐桐应助甜蜜念真采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
梁成伟发布了新的文献求助10
3秒前
Jasper应助斑驳采纳,获得10
4秒前
Aoren完成签到,获得积分10
4秒前
pupil完成签到,获得积分10
4秒前
4秒前
Jasper应助婉君采纳,获得10
5秒前
十五发布了新的文献求助10
5秒前
hsj完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
6秒前
鲸鱼发布了新的文献求助10
7秒前
果汁有点甜完成签到,获得积分10
7秒前
Ava应助悲凉的孤萍采纳,获得10
7秒前
研友_ngqQE8完成签到,获得积分10
7秒前
7秒前
Master_Ye发布了新的文献求助10
7秒前
晚晚发布了新的文献求助10
7秒前
7秒前
7秒前
NexusExplorer应助现实的千万采纳,获得10
7秒前
杨先生给杨先生的求助进行了留言
7秒前
秧秧发布了新的文献求助10
8秒前
xqler发布了新的文献求助10
8秒前
XNM完成签到,获得积分10
9秒前
9秒前
9秒前
Patrick发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437