Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:201
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小悦子完成签到,获得积分10
刚刚
若俗人完成签到,获得积分10
刚刚
fyy发布了新的文献求助10
刚刚
afterall完成签到 ,获得积分10
刚刚
依灵完成签到,获得积分10
刚刚
子乔完成签到,获得积分10
刚刚
刚刚
1秒前
简单的宛海完成签到,获得积分10
1秒前
1秒前
笑一笑发布了新的文献求助20
1秒前
2秒前
blueblue完成签到,获得积分10
2秒前
2秒前
简单的发夹完成签到,获得积分10
2秒前
来日方长完成签到,获得积分10
3秒前
岁岁平安发布了新的文献求助10
3秒前
欣欣完成签到,获得积分10
4秒前
4秒前
微眠发布了新的文献求助10
5秒前
大圣发布了新的文献求助10
5秒前
欣慰白山应助往前冲采纳,获得10
5秒前
一心向雨发布了新的文献求助10
5秒前
accept发布了新的文献求助10
5秒前
6秒前
不攻自破发布了新的文献求助10
6秒前
Lucky发布了新的文献求助10
6秒前
qian完成签到 ,获得积分10
6秒前
Suger完成签到 ,获得积分10
6秒前
科目三应助简单的宛海采纳,获得10
6秒前
感动的刚发布了新的文献求助10
6秒前
7秒前
顾矜应助Sandy采纳,获得10
7秒前
7秒前
8秒前
Susan完成签到,获得积分10
8秒前
兴奋的定帮应助阔达磬采纳,获得10
8秒前
透明人发布了新的文献求助10
8秒前
俏皮的采蓝完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301