Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing

计算卸载 计算机科学 强化学习 边缘计算 移动边缘计算 资源配置 计算 最优化问题 数学优化 理论计算机科学 人工智能 算法 GSM演进的增强数据速率 数学 计算机网络
作者
Huan Zhou,Kai Jiang,Xuxun Liu,Xiuhua Li,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 1517-1530 被引量:281
标识
DOI:10.1109/jiot.2021.3091142
摘要

Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named $Q$ -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep $Q$ network (DDQN)-based method, which can efficiently approximate the value function of $Q$ -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jam完成签到,获得积分10
刚刚
刚刚
Lucas发布了新的文献求助10
刚刚
蔡浩天应助ceeray23采纳,获得20
1秒前
末位牛马完成签到,获得积分10
1秒前
花开不败完成签到,获得积分20
2秒前
草履虫完成签到,获得积分10
2秒前
虚拟初之完成签到,获得积分10
2秒前
欣欣完成签到,获得积分10
2秒前
土豪的行云完成签到,获得积分10
2秒前
星星发布了新的文献求助10
3秒前
3秒前
溪风不渡发布了新的文献求助10
4秒前
黄科研完成签到,获得积分10
4秒前
carrie完成签到,获得积分20
4秒前
早日发文章完成签到 ,获得积分10
4秒前
Sevi完成签到,获得积分10
4秒前
麦辣鸡腿堡完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
搜集达人应助流萤采纳,获得10
6秒前
冷酷严青发布了新的文献求助10
6秒前
Avae完成签到,获得积分10
6秒前
道中道完成签到,获得积分10
6秒前
周周完成签到,获得积分10
7秒前
苏世誉完成签到,获得积分10
7秒前
小乐儿~完成签到,获得积分10
7秒前
小鹿完成签到,获得积分10
7秒前
8秒前
sad发布了新的文献求助10
8秒前
於傲松发布了新的文献求助10
8秒前
8秒前
liangguangyuan完成签到 ,获得积分10
8秒前
123987完成签到,获得积分10
8秒前
8秒前
打打应助Luhh采纳,获得10
8秒前
9秒前
周雪峰完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997