A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远完成签到,获得积分10
刚刚
战战完成签到,获得积分10
1秒前
553599712完成签到,获得积分10
3秒前
3秒前
3秒前
pluto完成签到,获得积分10
3秒前
木木完成签到,获得积分0
4秒前
CDH完成签到,获得积分10
4秒前
正直夜安完成签到 ,获得积分10
4秒前
爱吃蜂蜜发布了新的文献求助10
4秒前
风吹而过发布了新的文献求助30
4秒前
HelloJoey完成签到,获得积分10
5秒前
ding应助meme采纳,获得10
5秒前
Wsyyy完成签到 ,获得积分10
5秒前
冰儿菲菲完成签到,获得积分10
6秒前
王小凡完成签到 ,获得积分10
6秒前
6秒前
来弄完成签到,获得积分10
7秒前
zwjy完成签到,获得积分10
7秒前
HelloJoey发布了新的文献求助10
7秒前
清修发布了新的文献求助10
8秒前
王丹宁发布了新的文献求助10
9秒前
溆玉碎兰笑完成签到 ,获得积分10
9秒前
居然是我完成签到,获得积分10
10秒前
疯狂大脑壳完成签到,获得积分10
10秒前
TQ完成签到,获得积分10
10秒前
忙碌的数学人完成签到,获得积分10
10秒前
鲤鱼怀绿完成签到,获得积分10
11秒前
能干的邹完成签到 ,获得积分10
11秒前
酷炫的大碗完成签到,获得积分10
11秒前
欢呼妙菱发布了新的文献求助10
12秒前
ym完成签到 ,获得积分10
12秒前
Yosemite完成签到,获得积分10
12秒前
13秒前
hihi完成签到,获得积分10
13秒前
xuejie完成签到,获得积分10
13秒前
Vanilla完成签到,获得积分10
13秒前
任性铅笔完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259