已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助寇博翔采纳,获得10
刚刚
图图医关注了科研通微信公众号
4秒前
hhh完成签到 ,获得积分10
5秒前
7秒前
8秒前
6昂完成签到 ,获得积分10
10秒前
HMX发布了新的文献求助10
15秒前
图图医发布了新的文献求助10
16秒前
16秒前
17秒前
香蕉觅云应助玛卡巴卡采纳,获得10
18秒前
无心客应助玛卡巴卡采纳,获得10
18秒前
情怀应助玛卡巴卡采纳,获得10
18秒前
无心客应助玛卡巴卡采纳,获得10
18秒前
今后应助玛卡巴卡采纳,获得10
18秒前
无心客应助玛卡巴卡采纳,获得10
18秒前
Akim应助玛卡巴卡采纳,获得10
18秒前
酷波er应助玛卡巴卡采纳,获得10
19秒前
思源应助玛卡巴卡采纳,获得10
19秒前
充电宝应助玛卡巴卡采纳,获得10
19秒前
19秒前
健壮的思远完成签到,获得积分10
20秒前
天元神尊完成签到 ,获得积分10
20秒前
充电宝应助ddd采纳,获得10
21秒前
Alimove完成签到,获得积分10
21秒前
21秒前
WU发布了新的文献求助10
23秒前
深情安青应助四月采纳,获得10
24秒前
24秒前
Zoo发布了新的文献求助10
24秒前
25秒前
25秒前
慕青应助玛卡巴卡采纳,获得10
25秒前
victorycici发布了新的文献求助10
25秒前
wanci应助玛卡巴卡采纳,获得10
25秒前
Owen应助玛卡巴卡采纳,获得10
25秒前
星辰大海应助玛卡巴卡采纳,获得10
26秒前
善学以致用应助玛卡巴卡采纳,获得10
26秒前
小杭76应助玛卡巴卡采纳,获得10
26秒前
充电宝应助玛卡巴卡采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434