A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:115: 103865-103865 被引量:75
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助tt825采纳,获得10
刚刚
刚刚
让时间说真话完成签到,获得积分10
1秒前
未来可期发布了新的文献求助100
1秒前
2秒前
2秒前
ddd完成签到,获得积分10
2秒前
迅速的巧曼完成签到 ,获得积分10
3秒前
3秒前
烟尘完成签到,获得积分10
4秒前
852应助喝可乐的萝卜兔采纳,获得10
4秒前
酷酷亦凝完成签到 ,获得积分10
4秒前
没有锁骨的丑丑完成签到,获得积分10
5秒前
King强完成签到,获得积分10
5秒前
klb13应助114422采纳,获得10
5秒前
可爱安筠发布了新的文献求助10
5秒前
烟花应助Erizer采纳,获得10
5秒前
狂野的化蛹完成签到,获得积分10
6秒前
future完成签到 ,获得积分10
6秒前
7秒前
1a完成签到 ,获得积分10
7秒前
7秒前
8秒前
淡淡亦丝完成签到,获得积分10
8秒前
Bressanone完成签到,获得积分10
8秒前
8秒前
9秒前
YY完成签到,获得积分10
9秒前
chaosyw完成签到,获得积分10
9秒前
10秒前
11223完成签到,获得积分20
10秒前
激情的一刀完成签到,获得积分20
11秒前
1leven发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Ash完成签到 ,获得积分10
12秒前
医痞子发布了新的文献求助10
13秒前
13秒前
yulian发布了新的文献求助10
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262073
求助须知:如何正确求助?哪些是违规求助? 2902832
关于积分的说明 8322686
捐赠科研通 2572845
什么是DOI,文献DOI怎么找? 1397879
科研通“疑难数据库(出版商)”最低求助积分说明 653925
邀请新用户注册赠送积分活动 632489