亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
miki完成签到,获得积分10
35秒前
48秒前
1分钟前
化爷发布了新的文献求助10
1分钟前
科研通AI5应助化爷采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
111111完成签到 ,获得积分10
1分钟前
lztong完成签到,获得积分10
2分钟前
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
3分钟前
蛋白积聚完成签到,获得积分10
3分钟前
满意访冬完成签到,获得积分20
3分钟前
安静的飞珍完成签到,获得积分10
3分钟前
小丸子和zz完成签到 ,获得积分10
4分钟前
帅气的安柏完成签到,获得积分10
4分钟前
Jessiehuang完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
hqh发布了新的文献求助10
5分钟前
英姑应助hqh采纳,获得10
6分钟前
6分钟前
6分钟前
NS完成签到,获得积分10
6分钟前
锂电阳离子无序完成签到,获得积分10
6分钟前
6分钟前
嘬痰猩猩完成签到 ,获得积分10
6分钟前
小脸红扑扑完成签到 ,获得积分10
7分钟前
小二郎应助Omni采纳,获得10
8分钟前
8分钟前
世界完成签到,获得积分10
8分钟前
背后晓兰完成签到 ,获得积分10
9分钟前
xingsixs完成签到 ,获得积分10
9分钟前
Cassie发布了新的文献求助10
10分钟前
neversay4ever完成签到 ,获得积分10
10分钟前
科研通AI5应助秋日思语采纳,获得10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173907
求助须知:如何正确求助?哪些是违规求助? 4363577
关于积分的说明 13585660
捐赠科研通 4212170
什么是DOI,文献DOI怎么找? 2310257
邀请新用户注册赠送积分活动 1309341
关于科研通互助平台的介绍 1256759