A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助气敏侠采纳,获得10
1秒前
1秒前
1秒前
顺心冰岚发布了新的文献求助10
2秒前
2秒前
CipherSage应助庄里憨笑采纳,获得10
2秒前
青黛发布了新的文献求助10
3秒前
情怀应助顺心的筮采纳,获得10
3秒前
4秒前
TingWan发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
火星上送终完成签到,获得积分10
5秒前
6秒前
丘比特应助zzl采纳,获得10
6秒前
安静的缘分完成签到,获得积分10
6秒前
田様应助跳跃的明雪采纳,获得10
6秒前
6秒前
璇22发布了新的文献求助10
6秒前
xxfsx应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
yyzhou应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
yyzhou应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839