A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study

基本事实 人工智能 分割 锥束ct 计算机科学 精确性和召回率 试验装置 豪斯多夫距离 深度学习 模式识别(心理学) 计算机断层摄影术 医学 放射科
作者
Eman Shaheen,André Ferreira Leite,Khalid Alqahtani,A. Smolders,Adriaan Van Gerven,Holger Willems,Reinhilde Jacobs
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:115: 103865-103865 被引量:82
标识
DOI:10.1016/j.jdent.2021.103865
摘要

Automatic tooth segmentation and classification from cone beam computed tomography (CBCT) have become an integral component of the digital dental workflows. Therefore, the aim of this study was to develop and validate a deep learning approach for an automatic tooth segmentation and classification from CBCT images.A dataset of 186 CBCT scans was acquired from two CBCT machines with different acquisition settings. An artificial intelligence (AI) framework was built to segment and classify teeth. Teeth were segmented in a three-step approach with each step consisting of a 3D U-Net and step 2 included classification. The dataset was divided into training set (140 scans) to train the model based on ground-truth segmented teeth, validation set (35 scans) to test the model performance and test set (11 scans) to evaluate the model performance compared to ground-truth. Different evaluation metrics were used such as precision, recall rate and time.The AI framework correctly segmented teeth with optimal precision (0.98±0.02) and recall (0.83±0.05). The difference between the AI model and ground-truth was 0.56±0.38 mm based on 95% Hausdorff distance confirming the high performance of AI compared to ground-truth. Furthermore, segmentation of all the teeth within a scan was more than 1800 times faster for AI compared to that of an expert. Teeth classification also performed optimally with a recall rate of 98.5% and precision of 97.9%.The proposed 3D U-Net based AI framework is an accurate and time-efficient deep learning system for automatic tooth segmentation and classification without expert refinement.The proposed system might enable potential future applications for diagnostics and treatment planning in the field of digital dentistry, while reducing clinical workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liucheng发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
HI发布了新的文献求助10
2秒前
2秒前
qianqina完成签到,获得积分10
2秒前
好好好完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
乔乔完成签到,获得积分10
3秒前
3秒前
在水一方应助一群牛采纳,获得10
4秒前
4秒前
shiqiang mu应助雨寒采纳,获得10
4秒前
5秒前
未知发布了新的文献求助10
5秒前
5秒前
高媛完成签到,获得积分20
6秒前
yelaikuhun74发布了新的文献求助10
6秒前
蒋一发布了新的文献求助10
7秒前
qianqina发布了新的文献求助10
7秒前
7秒前
qise应助管夜白采纳,获得10
7秒前
乔呀完成签到,获得积分10
7秒前
xixi完成签到,获得积分20
8秒前
8秒前
Vivian完成签到,获得积分10
8秒前
8秒前
班玮越发布了新的文献求助10
8秒前
要增肥的樱完成签到,获得积分10
9秒前
科研通AI5应助雨碎寒江采纳,获得10
9秒前
liucheng完成签到,获得积分10
9秒前
10秒前
FashionBoy应助寒月如雪采纳,获得10
10秒前
qin发布了新的文献求助10
11秒前
11秒前
一年5篇发布了新的文献求助10
11秒前
明亮的小蘑菇完成签到 ,获得积分10
11秒前
chenk完成签到,获得积分10
11秒前
如意猕猴桃完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403