Self-renewal or quiescence? Orchestrating the fate of mesenchymal stem cells by matrix viscoelasticity via PI3K/Akt-CDK1 pathway

间充质干细胞 自愈水凝胶 应力松弛 材料科学 细胞生物学 粘弹性 细胞外基质 PI3K/AKT/mTOR通路 基质(化学分析) 蛋白激酶B 干细胞 生物物理学 生物医学工程 信号转导 生物 医学 复合材料 蠕动 高分子化学
作者
Chuanchuan Lin,Ye He,Qian Feng,Kun Xu,Zhe Chen,Bailong Tao,Xuemin Li,Zengzilu Xia,Hong Jiang,Kaiyong Cai
出处
期刊:Biomaterials [Elsevier]
卷期号:279: 121235-121235 被引量:22
标识
DOI:10.1016/j.biomaterials.2021.121235
摘要

To control the fate of mesenchymal stem cells (MSCs) in a 3D environment by adjusting the mechanical parameters of MSC-loading scaffolds, is one of the hot topics in the field of regenerative biomaterials. However, a thorough understanding of the relevant MSCs behaviors affected by viscoelasticity, a dynamic physical parameter of scaffolds, is still lacking. Herein, we established an alginate hydrogel system with constant stiffness and tunable stress relaxation rate, which is a key parameter for the viscoelastic property of material. MSCs were cultured inside three groups of alginate hydrogels with various stress relaxation rates, and then RNA-seq analysis of cells was performed. Results showed that the change of stress relaxation rates of hydrogels regulated the most of the different expression genes of MSCs, which were enriched in cell proliferation-related pathways. MSCs cultured in hydrogels with fast stress relaxation rate presented a high self-renewal proliferation profile via activating phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) pathway. In contrast, a slow stress relaxation rate of hydrogels induced MSCs to enter a reversible quiescence state due to the weakened PI3K/Akt activation. Combined with a further finite element analysis, we speculated that the quiescence of MSCs could be served as a positive strategy for MSCs to deal with the matrix with a low deformation to keep stemness. Based on the results, we identified that stress relaxation rate of hydrogel was a potential physical factor of hydrogel to regulate the self-renewal or quiescence of MSCs. Thus, our findings provide a significant guiding principle for the design of MSCs-encapsulated biomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖的豌豆完成签到,获得积分10
刚刚
刚刚
徐小发布了新的文献求助40
1秒前
2秒前
英俊的热狗关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
3秒前
传奇3应助一道光采纳,获得30
3秒前
4秒前
HUSTYXY发布了新的文献求助10
4秒前
yangyj完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
科研通AI6应助元子采纳,获得10
6秒前
6秒前
PMY发布了新的文献求助10
7秒前
开放谷芹发布了新的文献求助10
7秒前
慕暖发布了新的文献求助10
7秒前
明理的傲柔关注了科研通微信公众号
8秒前
9秒前
风中龙猫发布了新的文献求助10
9秒前
菜鱼完成签到,获得积分10
9秒前
四文鱼发布了新的文献求助10
10秒前
无极微光应助完美世界采纳,获得20
10秒前
bkagyin应助hbhbj采纳,获得10
10秒前
温暖发布了新的文献求助10
11秒前
诸葛语蝶完成签到,获得积分10
12秒前
星辰大海应助起床做核酸采纳,获得10
12秒前
小巧的箴发布了新的文献求助10
12秒前
微笑的尔蓝完成签到,获得积分10
13秒前
下一周完成签到,获得积分10
13秒前
PMY完成签到,获得积分10
14秒前
14秒前
磊少完成签到,获得积分10
14秒前
科研通AI6应助满意沛槐采纳,获得10
15秒前
Hello应助王为云采纳,获得10
16秒前
Lucas应助温暖采纳,获得10
17秒前
aaa完成签到,获得积分10
17秒前
Wind应助ecoli采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530824
求助须知:如何正确求助?哪些是违规求助? 4619829
关于积分的说明 14570171
捐赠科研通 4559332
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478292
关于科研通互助平台的介绍 1449845