An improved sparrow search algorithm based on levy flight and opposition-based learning

数学优化 算法 局部最优 水准点(测量) 局部搜索(优化) 计算机科学 莱维航班 威尔科克森符号秩检验 理论(学习稳定性) 支持向量机 人工智能 数学 机器学习 随机游动 统计 大地测量学 地理 曼惠特尼U检验
作者
Danni Chen,Jiandong Zhao,Peng Huang,Xiongna Deng,Tingting Lu
出处
期刊:Assembly Automation [Emerald (MCB UP)]
卷期号:41 (6): 697-713 被引量:11
标识
DOI:10.1108/aa-09-2020-0134
摘要

Purpose Sparrow search algorithm (SSA) is a novel global optimization method, but it is easy to fall into local optimization, which leads to its poor search accuracy and stability. The purpose of this study is to propose an improved SSA algorithm, called levy flight and opposition-based learning (LOSSA), based on LOSSA strategy. The LOSSA shows better search accuracy, faster convergence speed and stronger stability. Design/methodology/approach To further enhance the optimization performance of the algorithm, The Levy flight operation is introduced into the producers search process of the original SSA to enhance the ability of the algorithm to jump out of the local optimum. The opposition-based learning strategy generates better solutions for SSA, which is beneficial to accelerate the convergence speed of the algorithm. On the one hand, the performance of the LOSSA is evaluated by a set of numerical experiments based on classical benchmark functions. On the other hand, the hyper-parameter optimization problem of the Support Vector Machine (SVM) is also used to test the ability of LOSSA to solve practical problems. Findings First of all, the effectiveness of the two improved methods is verified by Wilcoxon signed rank test. Second, the statistical results of the numerical experiment show the significant improvement of the LOSSA compared with the original algorithm and other natural heuristic algorithms. Finally, the feasibility and effectiveness of the LOSSA in solving the hyper-parameter optimization problem of machine learning algorithms are demonstrated. Originality/value An improved SSA based on LOSSA is proposed in this paper. The experimental results show that the overall performance of the LOSSA is satisfactory. Compared with the SSA and other natural heuristic algorithms, the LOSSA shows better search accuracy, faster convergence speed and stronger stability. Moreover, the LOSSA also showed great optimization performance in the hyper-parameter optimization of the SVM model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhui应助xmy采纳,获得20
刚刚
一晌贪欢完成签到,获得积分10
刚刚
魁梧的手套完成签到,获得积分10
刚刚
3kou完成签到 ,获得积分10
刚刚
zxw发布了新的文献求助10
1秒前
完美世界应助整齐万宝路采纳,获得10
1秒前
旭旭发布了新的文献求助10
1秒前
啊玺完成签到,获得积分10
2秒前
七七完成签到 ,获得积分10
2秒前
迷了路的猫完成签到,获得积分10
2秒前
中华有为完成签到,获得积分10
3秒前
4秒前
搜集达人应助愉快的宛儿采纳,获得10
4秒前
李_小_八完成签到,获得积分10
4秒前
4秒前
吴jhj完成签到,获得积分10
4秒前
摸鱼ing完成签到,获得积分10
5秒前
5秒前
科研蠢狗发布了新的文献求助10
5秒前
7秒前
璐璐完成签到 ,获得积分10
8秒前
小米完成签到,获得积分10
8秒前
8秒前
xxx完成签到,获得积分10
8秒前
8秒前
123456yyds发布了新的文献求助10
9秒前
lyly发布了新的文献求助10
9秒前
明月曾经川岸去完成签到,获得积分10
10秒前
Zhang完成签到,获得积分10
10秒前
bkagyin应助粗暴的达采纳,获得10
10秒前
科研通AI5应助xiaoxue采纳,获得10
10秒前
kk应助123采纳,获得20
10秒前
等待八宝粥完成签到,获得积分10
10秒前
CC发布了新的文献求助10
11秒前
11秒前
12秒前
星海殇完成签到 ,获得积分0
12秒前
asdfqwer应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484889
求助须知:如何正确求助?哪些是违规求助? 3073816
关于积分的说明 9132776
捐赠科研通 2765431
什么是DOI,文献DOI怎么找? 1517845
邀请新用户注册赠送积分活动 702353
科研通“疑难数据库(出版商)”最低求助积分说明 701237