电催化剂
材料科学
双金属
催化作用
纳米棒
电化学
吸附
化学工程
密度泛函理论
无机化学
金属有机骨架
纳米技术
电极
物理化学
复合材料
化学
计算化学
有机化学
工程类
作者
Bo Geng,Feng Yan,Xiao Zhang,Yuqian He,Chunling Zhu,Shulei Chou,Xiaoli Zhang,Yujin Chen
标识
DOI:10.1002/adma.202106781
摘要
Metal-organic frameworks (MOFs) with intrinsically porous structures and well-dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu-catecholate (Cu-CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co-incorporated Cu-CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm-2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non-noble metal-based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH* ) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water ( ΔEH2O ) of Co sites in the CuCo-CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF-based electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI