Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss

材料科学 电介质 复合材料 介电损耗 导电体 介电常数 钛酸钡 渗流阈值 复合数 偶极子 电场 高-κ电介质 陶瓷 电阻率和电导率 光电子学 电气工程 工程类 物理 有机化学 化学 量子力学
作者
Wei Wu,Xueqing Liu,Zhe Qiang,Jiying Yang,Yuhong Liu,Kai Huai,Bailang Zhang,Shuxiang Jin,Yueyuan Xia,Kun Fu,Jianming Zhang,Yuwei Chen
出处
期刊:Composites Science and Technology [Elsevier BV]
卷期号:216: 109070-109070 被引量:20
标识
DOI:10.1016/j.compscitech.2021.109070
摘要

A longstanding challenge in fabricating high dielectric polymer composite is how to rationalize structure design to improve dielectric permittivity while minimizing dielectric loss. Typically, adding conductive particles in to the composite often leads to an increase in the dielectric loss caused by leakage current due to ‘insulator-conductor’ transition at the percolation threshold. This work presents a strategy for simultaneously assembling conductive and insulating particles to form chainlike structures, based on dipole-dipole interactions induced by electric fields. Specifically, insulating barium titanate (BaTiO3) particles can be subtly embeded in the conductive graphite channels to serve as barriers. The formation of such morphology plays an important role for balancing the high dielectric permittivity and relatively low dielectric loss for conductive fillers/polymer composite systems. With only 2.5 wt% graphite, the dielectric permittivity can be enhanced significantly upon electric field induced assembly, while the dielectric loss also inevitably increases to 396. By incorporating additional 5 wt% BaTiO3 (barriers), we are able to reduce the dielectric loss to as low as 0.19 while the dielectric permittivity still remains relatively high (73.5). This work provides a critical material design concept for high-performance flexible dielectric materials based on creating barriers through the assistance of electric fields in ternary composites, which prevents the generation of leakage current between conductive fillers interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Wxj246801采纳,获得10
刚刚
大志发布了新的文献求助10
1秒前
隐形曼青应助Alan采纳,获得10
2秒前
风和日丽完成签到,获得积分10
3秒前
积极山雁完成签到,获得积分10
3秒前
勤劳高跟鞋完成签到,获得积分10
3秒前
等待寄云发布了新的文献求助10
4秒前
在水一方应助高大的迎梦采纳,获得10
5秒前
Damon完成签到 ,获得积分10
5秒前
5秒前
YwYzzZ发布了新的文献求助10
6秒前
小青椒应助欣喜代秋采纳,获得80
6秒前
ADJ完成签到,获得积分10
6秒前
zhang完成签到 ,获得积分10
7秒前
李钟硕完成签到,获得积分10
7秒前
8秒前
万能图书馆应助莎博采纳,获得10
8秒前
李伟完成签到,获得积分10
8秒前
星辰大海应助YwYzzZ采纳,获得10
9秒前
10秒前
睡觉王完成签到 ,获得积分10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Dean应助科研通管家采纳,获得30
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得20
10秒前
浮浮世世应助科研通管家采纳,获得30
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
段盼兰应助科研通管家采纳,获得20
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
圆锥香蕉应助科研通管家采纳,获得20
11秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544308
求助须知:如何正确求助?哪些是违规求助? 3976503
关于积分的说明 12314209
捐赠科研通 3644494
什么是DOI,文献DOI怎么找? 2007062
邀请新用户注册赠送积分活动 1042502
科研通“疑难数据库(出版商)”最低求助积分说明 931557