Inserting insulating barriers into conductive particle channels: A new paradigm for fabricating polymer composites with high dielectric permittivity and low dielectric loss

材料科学 电介质 复合材料 介电损耗 导电体 介电常数 钛酸钡 渗流阈值 复合数 偶极子 电场 高-κ电介质 陶瓷 电阻率和电导率 光电子学 电气工程 工程类 物理 有机化学 化学 量子力学
作者
Wei Wu,Xueqing Liu,Zhe Qiang,Jiying Yang,Yuhong Liu,Kai Huai,Bailang Zhang,Shuxiang Jin,Yueyuan Xia,Kun Fu,Jianming Zhang,Yuwei Chen
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:216: 109070-109070 被引量:20
标识
DOI:10.1016/j.compscitech.2021.109070
摘要

A longstanding challenge in fabricating high dielectric polymer composite is how to rationalize structure design to improve dielectric permittivity while minimizing dielectric loss. Typically, adding conductive particles in to the composite often leads to an increase in the dielectric loss caused by leakage current due to ‘insulator-conductor’ transition at the percolation threshold. This work presents a strategy for simultaneously assembling conductive and insulating particles to form chainlike structures, based on dipole-dipole interactions induced by electric fields. Specifically, insulating barium titanate (BaTiO3) particles can be subtly embeded in the conductive graphite channels to serve as barriers. The formation of such morphology plays an important role for balancing the high dielectric permittivity and relatively low dielectric loss for conductive fillers/polymer composite systems. With only 2.5 wt% graphite, the dielectric permittivity can be enhanced significantly upon electric field induced assembly, while the dielectric loss also inevitably increases to 396. By incorporating additional 5 wt% BaTiO3 (barriers), we are able to reduce the dielectric loss to as low as 0.19 while the dielectric permittivity still remains relatively high (73.5). This work provides a critical material design concept for high-performance flexible dielectric materials based on creating barriers through the assistance of electric fields in ternary composites, which prevents the generation of leakage current between conductive fillers interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到 ,获得积分10
1秒前
1秒前
傲娇的凡旋应助spurs17采纳,获得10
1秒前
长情若魔完成签到,获得积分10
3秒前
XM完成签到,获得积分10
3秒前
3秒前
LQW发布了新的文献求助30
3秒前
大个应助Rrr采纳,获得10
3秒前
4秒前
5秒前
5秒前
7秒前
zfy完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
w17638619025完成签到 ,获得积分20
10秒前
撒上咖啡应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
11秒前
菠萝吹雪应助科研通管家采纳,获得30
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
西内!卡Q因完成签到,获得积分10
12秒前
我是125应助www采纳,获得10
12秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
12秒前
Zzzzzzzzzzz发布了新的文献求助10
12秒前
长情若魔发布了新的文献求助10
12秒前
酷酷酷完成签到,获得积分10
13秒前
13秒前
BaekHyun发布了新的文献求助10
14秒前
xuex1发布了新的文献求助10
14秒前
孙皓然完成签到 ,获得积分10
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808