计算机科学
卷积神经网络
人工智能
模式识别(心理学)
特征提取
调制(音乐)
特征(语言学)
语音识别
深度学习
噪音(视频)
循环神经网络
人工神经网络
图像(数学)
语言学
美学
哲学
作者
Fugang Liu,Ziwei Zhang,Ruolin Zhou
出处
期刊:Tsinghua Science & Technology
[Tsinghua University Press]
日期:2022-04-01
卷期号:27 (2): 422-431
被引量:12
标识
DOI:10.26599/tst.2020.9010057
摘要
Based on a comparative analysis of the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks, we optimize the structure of the GRU network and propose a new modulation recognition method based on feature extraction and a deep learning algorithm. High-order cumulant, Signal-to-Noise Ratio (SNR), instantaneous feature, and the cyclic spectrum of signals are extracted firstly, and then input into the Convolutional Neural Network (CNN) and the parallel network of GRU for recognition. Eight modulation modes of communication signals are recognized automatically. Simulation results show that the proposed method can achieve high recognition rate at low SNR.
科研通智能强力驱动
Strongly Powered by AbleSci AI