材料科学
动力学
相(物质)
扩散
锂(药物)
热扩散率
转化(遗传学)
衍射
化学工程
同步加速器
电化学
分析化学(期刊)
化学物理
热力学
电极
物理化学
色谱法
化学
物理
工程类
内分泌学
量子力学
光学
有机化学
核物理学
生物化学
基因
医学
作者
Hyejeong Hyun,Kyeongjae Jeong,Hyukhun Hong,Sungjae Seo,Bonho Koo,Danwon Lee,Subin Choi,Sugeun Jo,Keeyoung Jung,Hoon‐Hwe Cho,Heung Nam Han,Tae Joo Shin,Jongwoo Lim
标识
DOI:10.1002/adma.202105337
摘要
Understanding the cycling rate-dependent kinetics is crucial for managing the performance of batteries in high-power applications. Although high cycling rates may induce reaction heterogeneity and affect battery lifetime and capacity utilization, such phase transformation dynamics are poorly understood and uncontrollable. In this study, synchrotron-based operando X-ray diffraction is performed to monitor the high-current-induced phase transformation kinetics of LiNi0.6 Co0.2 Mn0.2 O2 . The sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by exploiting the dependence of Li diffusivity on the Li content and electrochemically tuning the initial Li content and distribution, phase separation pathway can be redirected to solid solution kinetics at a high charging rate of 7 C. Finite element analysis further elucidates the effect of the Li-content-dependent diffusion kinetics on the phase transformation pathway. The findings suggest a new direction for optimizing fast-cycling protocols based on the intrinsic properties of the materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI