Machine learning-based pathomics signature could act as a novel prognostic marker for patients with clear cell renal cell carcinoma

肾透明细胞癌 列线图 比例危险模型 医学 肾细胞癌 危险系数 肿瘤科 内科学 组织病理学 生存分析 机器学习 人工智能 病理 计算机科学 置信区间
作者
Siteng Chen,Liren Jiang,Feng Gao,Encheng Zhang,Tao Wang,Ning Zhang,Xiang Wang,Junhua Zheng
出处
期刊:British Journal of Cancer [Springer Nature]
卷期号:126 (5): 771-777 被引量:28
标识
DOI:10.1038/s41416-021-01640-2
摘要

Traditional histopathology performed by pathologists through naked eyes is insufficient for accurate survival prediction of clear cell renal cell carcinoma (ccRCC). A total of 483 whole slide images (WSIs) data from three patient cohorts were retrospectively analyzed. We performed machine learning algorithm to identify optimal digital pathological features and constructed machine learning-based pathomics signature (MLPS) for ccRCC patients. Prognostic performance of the prognostic model was also verified in two independent validation cohorts. MLPS could significantly distinguish ccRCC patients with high survival risk, with hazard ratio of 15.05, 4.49 and 1.65 in three independent cohorts, respectively. Cox regression analysis revealed that the MLPS could act as an independent prognostic factor for ccRCC patients. Integration nomogram based on MLPS, tumour stage system and tumour grade system improved the current survival prediction accuracy for ccRCC patients, with area under curve value of 89.5%, 90.0%, 88.5% and 85.9% for 1-, 3-, 5- and 10-year disease-free survival prediction. The machine learning-based pathomics signature could act as a novel prognostic marker for patients with ccRCC. Nevertheless, prospective studies with multicentric patient cohorts are still needed for further verifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马人生完成签到,获得积分10
2秒前
NexusExplorer应助你好啊采纳,获得10
2秒前
2秒前
温馨完成签到 ,获得积分10
3秒前
清爽如雪完成签到 ,获得积分10
4秒前
xx发布了新的文献求助10
9秒前
犬豆斑完成签到,获得积分10
10秒前
Orange应助凛雪鸦采纳,获得10
10秒前
懵懂的听枫完成签到,获得积分10
12秒前
Hayat发布了新的文献求助20
12秒前
Owen应助BK采纳,获得10
13秒前
小蘑菇应助整齐百褶裙采纳,获得10
13秒前
充电宝应助陶醉觅夏采纳,获得10
13秒前
15秒前
Rui完成签到,获得积分10
17秒前
麻辣鱼头完成签到,获得积分10
17秒前
17秒前
18秒前
adobe完成签到,获得积分10
19秒前
21秒前
ting完成签到,获得积分10
24秒前
琉璃苣应助默默的安白采纳,获得10
24秒前
laoliu发布了新的文献求助10
25秒前
夏之完成签到,获得积分10
30秒前
酷波er应助怕孤独的可乐采纳,获得10
33秒前
细腻的歌曲完成签到,获得积分10
34秒前
稳重的若雁应助fuzhy采纳,获得10
34秒前
luckinstar完成签到,获得积分10
34秒前
35秒前
连牙蓝上了吗完成签到 ,获得积分10
37秒前
40秒前
优秀灵竹发布了新的文献求助10
40秒前
adam完成签到,获得积分10
40秒前
Clover04应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
mmlb发布了新的文献求助10
42秒前
诗与应助科研通管家采纳,获得30
42秒前
iNk应助科研通管家采纳,获得10
42秒前
麻薯头头发布了新的文献求助10
45秒前
衍灵之心完成签到,获得积分10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023