AN APPROACH FOR VEHICLE ROUTING PROBLEM USING GRASSHOPPER OPTIMIZATION ALGORITHM AND SIMULATED ANNEALING

车辆路径问题 数学优化 模拟退火 蚁群优化算法 计算机科学 聚类分析 节点(物理) 遗传算法 最短路径问题 地铁列车时刻表 算法 布线(电子设计自动化) 数学 工程类 图形 人工智能 理论计算机科学 操作系统 结构工程 计算机网络
作者
Sunil Boro,Santosh Kumar Behera
出处
期刊:International journal of advanced research [International Journal Of Advanced Research]
卷期号:9 (03): 59-64 被引量:1
标识
DOI:10.21474/ijar01/12554
摘要

This paper is focused on the study of the basic problem of the vehicle for reducing the cost factor and increasing efficiency of the solution. Features and constraint uses some capabilities of the algorithm used to modify it dynamically between the nodes and depot. This is demonstrated with a feasible schedule for every node and minimizes the total cost as much as possible. The analysis is based on the address of the given model and solution procedure.The purpose of this research paper is to provide examples of models and applications which include the profits, extensions and partitioned features. The objective is to minimize the traveled distance that visits every subset of nodes one after another while maximizing or satisfying a minimum collected profit from each visited node. The concepts of VRP are discussed in Section I and the issues discussed in paper are in Section VI. Section VI also contains the modeling aspects and constraints that can be used in solving VRP in this paper. Simulated annealing and grasshopper optimization algorithm are combined for solving vehicle routing problem as discussed in Section VII. This study investigates both the variants of algorithm for the clustering nodes and different methods for the generation of routes to overcome optimal VRP solution. In conventional grasshopper algorithm, shortest path for certain node that starts from center depot is calculated by means of local search algorithms. Few methods such as ant colony optimization and genetic algorithm are considered for the route optimization. We can compare the performance of these methods to solve the VRP. Therefore, performance of the proposed method is able to produce better solutions than the other methods which reveal a large number of benchmark experimental results and is very promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助终梦采纳,获得10
1秒前
小田完成签到 ,获得积分10
2秒前
zxj完成签到,获得积分10
3秒前
科研通AI2S应助科研小虫采纳,获得30
3秒前
南瓜头完成签到 ,获得积分10
4秒前
4秒前
阳生发布了新的文献求助10
4秒前
Ade完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
念姬完成签到 ,获得积分10
8秒前
9秒前
xionggege完成签到,获得积分10
9秒前
9秒前
妙奇完成签到,获得积分10
10秒前
靓丽孤容完成签到,获得积分20
10秒前
Tiamo完成签到,获得积分10
11秒前
CYH完成签到,获得积分10
12秒前
饱饱完成签到,获得积分10
13秒前
江野完成签到 ,获得积分10
13秒前
蛋花肉圆汤完成签到,获得积分10
13秒前
14秒前
14秒前
suandlin完成签到 ,获得积分20
14秒前
111完成签到 ,获得积分20
15秒前
饱饱发布了新的文献求助10
16秒前
自然若完成签到,获得积分10
16秒前
Scout完成签到,获得积分10
16秒前
Zeeshan发布了新的文献求助10
17秒前
专心搞科研完成签到 ,获得积分10
17秒前
zt发布了新的文献求助10
18秒前
20秒前
nextconnie完成签到,获得积分10
20秒前
小v1212完成签到,获得积分20
22秒前
23秒前
爱吃肥牛完成签到,获得积分10
23秒前
隐形fh完成签到,获得积分10
24秒前
宋江他大表哥完成签到,获得积分10
24秒前
ttkd11完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910985
求助须知:如何正确求助?哪些是违规求助? 4186532
关于积分的说明 13000264
捐赠科研通 3954156
什么是DOI,文献DOI怎么找? 2168267
邀请新用户注册赠送积分活动 1186667
关于科研通互助平台的介绍 1093993