AN APPROACH FOR VEHICLE ROUTING PROBLEM USING GRASSHOPPER OPTIMIZATION ALGORITHM AND SIMULATED ANNEALING

车辆路径问题 数学优化 模拟退火 蚁群优化算法 计算机科学 聚类分析 节点(物理) 遗传算法 最短路径问题 地铁列车时刻表 算法 布线(电子设计自动化) 数学 工程类 图形 人工智能 计算机网络 结构工程 理论计算机科学 操作系统
作者
Sunil Boro,Santosh Kumar Behera
出处
期刊:International journal of advanced research [International Journal Of Advanced Research]
卷期号:9 (03): 59-64 被引量:1
标识
DOI:10.21474/ijar01/12554
摘要

This paper is focused on the study of the basic problem of the vehicle for reducing the cost factor and increasing efficiency of the solution. Features and constraint uses some capabilities of the algorithm used to modify it dynamically between the nodes and depot. This is demonstrated with a feasible schedule for every node and minimizes the total cost as much as possible. The analysis is based on the address of the given model and solution procedure.The purpose of this research paper is to provide examples of models and applications which include the profits, extensions and partitioned features. The objective is to minimize the traveled distance that visits every subset of nodes one after another while maximizing or satisfying a minimum collected profit from each visited node. The concepts of VRP are discussed in Section I and the issues discussed in paper are in Section VI. Section VI also contains the modeling aspects and constraints that can be used in solving VRP in this paper. Simulated annealing and grasshopper optimization algorithm are combined for solving vehicle routing problem as discussed in Section VII. This study investigates both the variants of algorithm for the clustering nodes and different methods for the generation of routes to overcome optimal VRP solution. In conventional grasshopper algorithm, shortest path for certain node that starts from center depot is calculated by means of local search algorithms. Few methods such as ant colony optimization and genetic algorithm are considered for the route optimization. We can compare the performance of these methods to solve the VRP. Therefore, performance of the proposed method is able to produce better solutions than the other methods which reveal a large number of benchmark experimental results and is very promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwj发布了新的文献求助10
刚刚
dyh关闭了dyh文献求助
1秒前
mmy完成签到,获得积分10
1秒前
Jerry完成签到 ,获得积分10
1秒前
zzx发布了新的文献求助10
1秒前
Ava应助酷酷问薇采纳,获得10
2秒前
1234发布了新的文献求助10
2秒前
rixinsu发布了新的文献求助10
3秒前
3秒前
3秒前
超帅的南珍完成签到,获得积分10
3秒前
3秒前
虚幻蹇完成签到,获得积分10
3秒前
冷傲的薯片完成签到 ,获得积分10
4秒前
Jasper应助karL采纳,获得10
4秒前
mirrovo发布了新的文献求助100
4秒前
4秒前
英姑应助无私的紫文采纳,获得10
4秒前
大个应助rixinsu采纳,获得10
7秒前
恣意发布了新的文献求助10
8秒前
8秒前
星辰大海应助失眠的寄翠采纳,获得10
8秒前
8秒前
wanci应助zzx采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
慈祥的傲安完成签到,获得积分20
9秒前
10秒前
树上香蕉果完成签到,获得积分10
11秒前
午夜煎饼完成签到 ,获得积分10
11秒前
11秒前
小马完成签到,获得积分10
12秒前
fei应助jssssssss采纳,获得30
12秒前
依恋发布了新的文献求助10
12秒前
12秒前
NIBABA完成签到,获得积分10
13秒前
微笑的觅露完成签到 ,获得积分10
13秒前
13秒前
陈槊诸发布了新的文献求助10
13秒前
虚拟的以南完成签到,获得积分10
14秒前
Daty发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379