AN APPROACH FOR VEHICLE ROUTING PROBLEM USING GRASSHOPPER OPTIMIZATION ALGORITHM AND SIMULATED ANNEALING

车辆路径问题 数学优化 模拟退火 蚁群优化算法 计算机科学 聚类分析 节点(物理) 遗传算法 最短路径问题 地铁列车时刻表 算法 布线(电子设计自动化) 数学 工程类 图形 人工智能 理论计算机科学 操作系统 结构工程 计算机网络
作者
Sunil Boro,Santosh Kumar Behera
出处
期刊:International journal of advanced research [International Journal Of Advanced Research]
卷期号:9 (03): 59-64 被引量:1
标识
DOI:10.21474/ijar01/12554
摘要

This paper is focused on the study of the basic problem of the vehicle for reducing the cost factor and increasing efficiency of the solution. Features and constraint uses some capabilities of the algorithm used to modify it dynamically between the nodes and depot. This is demonstrated with a feasible schedule for every node and minimizes the total cost as much as possible. The analysis is based on the address of the given model and solution procedure.The purpose of this research paper is to provide examples of models and applications which include the profits, extensions and partitioned features. The objective is to minimize the traveled distance that visits every subset of nodes one after another while maximizing or satisfying a minimum collected profit from each visited node. The concepts of VRP are discussed in Section I and the issues discussed in paper are in Section VI. Section VI also contains the modeling aspects and constraints that can be used in solving VRP in this paper. Simulated annealing and grasshopper optimization algorithm are combined for solving vehicle routing problem as discussed in Section VII. This study investigates both the variants of algorithm for the clustering nodes and different methods for the generation of routes to overcome optimal VRP solution. In conventional grasshopper algorithm, shortest path for certain node that starts from center depot is calculated by means of local search algorithms. Few methods such as ant colony optimization and genetic algorithm are considered for the route optimization. We can compare the performance of these methods to solve the VRP. Therefore, performance of the proposed method is able to produce better solutions than the other methods which reveal a large number of benchmark experimental results and is very promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJQ发布了新的文献求助30
刚刚
刚刚
励志梦完成签到,获得积分10
1秒前
领导范儿应助su采纳,获得10
2秒前
Ll发布了新的文献求助10
2秒前
pi发布了新的文献求助10
2秒前
尔晚完成签到,获得积分10
2秒前
长情绿凝发布了新的文献求助10
2秒前
完美世界应助Huaiman采纳,获得10
2秒前
JamesPei应助zhaomr采纳,获得10
2秒前
调研昵称发布了新的文献求助10
2秒前
2秒前
雨中的诗柳完成签到,获得积分10
2秒前
酷波er应助小鼠拯救者采纳,获得10
2秒前
丘比特应助动听导师采纳,获得10
2秒前
3秒前
3秒前
Krystal完成签到,获得积分10
3秒前
逝水无痕完成签到,获得积分10
3秒前
lkc发布了新的文献求助10
5秒前
5秒前
又村完成签到 ,获得积分10
5秒前
jiojio完成签到,获得积分10
6秒前
蔡小葵发布了新的文献求助10
6秒前
Acc完成签到,获得积分10
6秒前
6秒前
yasan发布了新的文献求助10
6秒前
小怀完成签到 ,获得积分10
7秒前
7秒前
Mia完成签到 ,获得积分20
7秒前
友好灵萱完成签到,获得积分10
7秒前
7秒前
ah完成签到,获得积分10
8秒前
科研CY发布了新的文献求助10
8秒前
假行僧完成签到,获得积分10
8秒前
刘芸芸发布了新的文献求助10
8秒前
赖建琛完成签到 ,获得积分10
9秒前
9秒前
9秒前
哆啦顺利毕业完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762