A wafer-scale etching technique for high aspect ratio implantable MEMS structures

晶片切割 薄脆饼 蚀刻(微加工) 微电子机械系统 材料科学 电极 制作 光电子学 深反应离子刻蚀 干法蚀刻 反应离子刻蚀 各向同性腐蚀 纳米技术 化学 图层(电子) 物理化学 替代医学 病理 医学
作者
R. Bhandari,Sandeep Negi,Loren Rieth,Florian Solzbacher
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:162 (1): 130-136 被引量:59
标识
DOI:10.1016/j.sna.2010.06.011
摘要

Microsystem technology is well suited to batch fabricate microelectrode arrays, such as the Utah electrode array (UEA), intended for recording and stimulating neural tissue. Fabrication of the UEA is primarily based on the use of dicing and wet etching to achieve high aspect ratio (15:1) penetrating electrodes. An important step in the array fabrication is the etching of electrodes to produce needle-shape electrodes with sharp tips. Traditional etching processes are performed on a single array, and the etching conditions are not optimized. As a result, the process leads to variable geometries of electrodes within an array. Furthermore, the process is not only time consuming but also labor-intensive. This report presents a wafer-scale etching method for the UEA. The method offers several advantages, such as substantial reduction in the processing time, higher throughput and lower cost. More importantly, the method increases the geometrical uniformity from electrode to electrode within an array (1.5 ± 0.5% non-uniformity), and from array to array within a wafer (2 ± 0.3% non-uniformity). Also, the etching rate of silicon columns, produced by dicing, are studied as a function of temperature, etching time and stirring rate in a nitric acid rich HF–HNO3 solution. These parameters were found to be related to the etching rates over the ranges studied and more importantly affect the uniformity of the etched silicon columns. An optimum etching condition was established to achieve uniform shape electrode arrays on wafer-scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
li发布了新的文献求助10
1秒前
SciGPT应助大白采纳,获得10
2秒前
大吴克发布了新的文献求助10
2秒前
pcm完成签到,获得积分10
2秒前
彭于晏应助Ssyong采纳,获得10
2秒前
CC发布了新的文献求助10
2秒前
宇少爱学习哟完成签到,获得积分10
3秒前
3秒前
Amber应助曹梦梦采纳,获得10
3秒前
科研通AI5应助平淡南霜采纳,获得10
4秒前
小刘不笨发布了新的文献求助10
4秒前
4秒前
GWM发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
novia完成签到,获得积分10
4秒前
东郭南松发布了新的文献求助10
5秒前
经法发布了新的文献求助10
5秒前
韭菜盒子发布了新的文献求助10
5秒前
donk完成签到 ,获得积分10
6秒前
传奇3应助lx采纳,获得10
6秒前
7秒前
华仔应助bluer采纳,获得10
7秒前
poo1900完成签到,获得积分10
7秒前
ssx完成签到,获得积分10
7秒前
7秒前
xuanxuan完成签到,获得积分10
7秒前
CyrusSo524完成签到,获得积分10
7秒前
7秒前
格格星完成签到,获得积分10
8秒前
jackish完成签到,获得积分10
8秒前
8秒前
8秒前
英姑应助温柔若采纳,获得10
8秒前
9秒前
熠熠完成签到,获得积分10
11秒前
wangping发布了新的文献求助10
11秒前
李爱国应助小豆芽儿采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678