亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

共价键 机械化学 聚合物 材料科学 机械敏感通道 弹性体 化学 网络共价键合 化学键 非共价相互作用 纳米技术 复合材料 分子 氢键 有机化学 受体 生物化学 离子通道
作者
Douglas A. Davis,Andrew Hamilton,Jinglei Yang,Lee D. Cremar,Dara Van. Gough,Stephanie Potisek,Mitchell T. Ong,Paul V. Braun,Todd J. Martı́nez,Scott R. White,Jeffrey S. Moore,Nancy R. Sottos
出处
期刊:Nature [Springer Nature]
卷期号:459 (7243): 68-72 被引量:1534
标识
DOI:10.1038/nature07970
摘要

Biology is replete with materials systems that actively and functionally respond to mechanical stimuli and thereby enable physiological processes such as the sense of touch, hearing or the growth of tissue and bone. In contrast, exposing polymers to large stresses tends to result in covalent bond rupture and hence damage or failure. Davis et al. now demonstrate that synthetic materials can be rationally designed to ensure that mechanical stress alters their properties in a useful manner. This is realized by incorporating a chemical group that responds to mechanical stress by changing its colour to red as it undergoes a ring-opening reaction, enabling the team to directly monitor the accumulation of plastic deformation. The principles underpinning this work should enable the development of other force-responsive chemical groups that could impart synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Exposing synthetic materials to large stresses tends to result in simple failure, unlike many biological systems, which respond by enabling physiological processes such as hearing and balance. But by incorporating a chemical group that responds to mechanical stress by changing its colour, it is possible to monitor the accumulation of plastic deformation directly in a synthetic polymer. This principle could be used to design synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone1,2,3,4,5,6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed8,9,10,11,12,13,14; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江子骞完成签到 ,获得积分10
4秒前
小梦完成签到,获得积分10
8秒前
科研小白完成签到 ,获得积分10
9秒前
狐狸萌萌哒完成签到 ,获得积分10
10秒前
14秒前
16秒前
16秒前
小二郎应助爱听歌笑寒采纳,获得10
18秒前
Zsl发布了新的文献求助10
18秒前
阿尼亚发布了新的文献求助10
19秒前
21秒前
李昕123完成签到 ,获得积分10
22秒前
26秒前
26秒前
大东子发布了新的文献求助10
30秒前
Zsl完成签到,获得积分10
38秒前
华仔应助阿尼亚采纳,获得10
50秒前
poegtam完成签到,获得积分10
53秒前
56秒前
碗千岁发布了新的文献求助10
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
英俊的铭应助LL采纳,获得10
1分钟前
CipherSage应助碗千岁采纳,获得10
1分钟前
西山雨完成签到 ,获得积分10
1分钟前
wanci应助wang采纳,获得50
1分钟前
2分钟前
碧蓝香芦完成签到 ,获得积分10
2分钟前
科研通AI2S应助Lorain采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
优秀夏天发布了新的文献求助10
3分钟前
3分钟前
碗千岁发布了新的文献求助10
3分钟前
3分钟前
3分钟前
erming发布了新的文献求助10
3分钟前
淡定的苠完成签到 ,获得积分10
3分钟前
polley完成签到,获得积分20
3分钟前
polley发布了新的文献求助10
3分钟前
碗千岁完成签到,获得积分10
3分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795177
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301468
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146