Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

共价键 机械化学 聚合物 材料科学 机械敏感通道 弹性体 化学 网络共价键合 化学键 非共价相互作用 纳米技术 复合材料 分子 氢键 有机化学 生物化学 受体 离子通道
作者
Douglas A. Davis,Andrew Hamilton,Jinglei Yang,Lee D. Cremar,Dara Van. Gough,Stephanie Potisek,Mitchell T. Ong,Paul V. Braun,Todd J. Martı́nez,Scott R. White,Jeffrey S. Moore,Nancy R. Sottos
出处
期刊:Nature [Nature Portfolio]
卷期号:459 (7243): 68-72 被引量:1596
标识
DOI:10.1038/nature07970
摘要

Biology is replete with materials systems that actively and functionally respond to mechanical stimuli and thereby enable physiological processes such as the sense of touch, hearing or the growth of tissue and bone. In contrast, exposing polymers to large stresses tends to result in covalent bond rupture and hence damage or failure. Davis et al. now demonstrate that synthetic materials can be rationally designed to ensure that mechanical stress alters their properties in a useful manner. This is realized by incorporating a chemical group that responds to mechanical stress by changing its colour to red as it undergoes a ring-opening reaction, enabling the team to directly monitor the accumulation of plastic deformation. The principles underpinning this work should enable the development of other force-responsive chemical groups that could impart synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Exposing synthetic materials to large stresses tends to result in simple failure, unlike many biological systems, which respond by enabling physiological processes such as hearing and balance. But by incorporating a chemical group that responds to mechanical stress by changing its colour, it is possible to monitor the accumulation of plastic deformation directly in a synthetic polymer. This principle could be used to design synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone1,2,3,4,5,6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed8,9,10,11,12,13,14; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duke完成签到,获得积分10
2秒前
知性的囧发布了新的文献求助10
3秒前
小马甲应助大力的诗蕾采纳,获得10
4秒前
4秒前
灼灼朗朗完成签到,获得积分10
5秒前
gww完成签到,获得积分10
5秒前
tly完成签到,获得积分10
6秒前
keyun完成签到,获得积分20
6秒前
青柠完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
上官若男应助孤独的珩采纳,获得10
10秒前
SYLH应助tly采纳,获得10
11秒前
渝州人完成签到,获得积分10
11秒前
12秒前
Lynn完成签到 ,获得积分10
13秒前
XXXXX完成签到,获得积分20
15秒前
15秒前
George完成签到,获得积分10
15秒前
六眼通完成签到,获得积分10
17秒前
WZX完成签到,获得积分10
17秒前
18秒前
欣慰凌丝发布了新的文献求助10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
甜甜茈完成签到 ,获得积分10
19秒前
开心的小熊完成签到,获得积分10
19秒前
吕旭发布了新的文献求助10
19秒前
Hello应助寻123采纳,获得10
21秒前
SYLH应助tly采纳,获得10
21秒前
21秒前
共享精神应助沉默是金12采纳,获得10
22秒前
22秒前
23秒前
24秒前
25秒前
erhya完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891