Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

共价键 机械化学 聚合物 材料科学 机械敏感通道 弹性体 化学 网络共价键合 化学键 非共价相互作用 纳米技术 复合材料 分子 氢键 有机化学 生物化学 受体 离子通道
作者
Douglas A. Davis,Andrew Hamilton,Jinglei Yang,Lee D. Cremar,Dara Van. Gough,Stephanie Potisek,Mitchell T. Ong,Paul V. Braun,Todd J. Martı́nez,Scott R. White,Jeffrey S. Moore,Nancy R. Sottos
出处
期刊:Nature [Nature Portfolio]
卷期号:459 (7243): 68-72 被引量:1596
标识
DOI:10.1038/nature07970
摘要

Biology is replete with materials systems that actively and functionally respond to mechanical stimuli and thereby enable physiological processes such as the sense of touch, hearing or the growth of tissue and bone. In contrast, exposing polymers to large stresses tends to result in covalent bond rupture and hence damage or failure. Davis et al. now demonstrate that synthetic materials can be rationally designed to ensure that mechanical stress alters their properties in a useful manner. This is realized by incorporating a chemical group that responds to mechanical stress by changing its colour to red as it undergoes a ring-opening reaction, enabling the team to directly monitor the accumulation of plastic deformation. The principles underpinning this work should enable the development of other force-responsive chemical groups that could impart synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Exposing synthetic materials to large stresses tends to result in simple failure, unlike many biological systems, which respond by enabling physiological processes such as hearing and balance. But by incorporating a chemical group that responds to mechanical stress by changing its colour, it is possible to monitor the accumulation of plastic deformation directly in a synthetic polymer. This principle could be used to design synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone1,2,3,4,5,6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed8,9,10,11,12,13,14; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助uppnice采纳,获得10
1秒前
独白发布了新的文献求助10
1秒前
2秒前
avc发布了新的文献求助10
3秒前
5秒前
SciGPT应助迟迟采纳,获得10
5秒前
5秒前
无生发布了新的文献求助10
7秒前
orixero应助爱学习的小花生采纳,获得10
7秒前
ywl发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
梦鱼完成签到 ,获得积分10
13秒前
15秒前
16秒前
研友_VZG7GZ应助lzz采纳,获得10
16秒前
HQK完成签到,获得积分10
18秒前
阳佟冬卉完成签到,获得积分10
18秒前
大个应助ywl采纳,获得10
18秒前
迟迟发布了新的文献求助10
20秒前
joshar发布了新的文献求助10
23秒前
独白完成签到,获得积分10
24秒前
FashionBoy应助zzbyxh采纳,获得10
24秒前
yx_cheng应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得50
24秒前
Hello应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
24秒前
华仔应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
27秒前
33秒前
自觉曼岚发布了新的文献求助10
33秒前
34秒前
Yolo完成签到,获得积分10
34秒前
卡卡可可完成签到,获得积分10
36秒前
在水一方应助天真的迎天采纳,获得10
36秒前
安陌煜发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390