Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

共价键 机械化学 聚合物 材料科学 机械敏感通道 弹性体 化学 网络共价键合 化学键 非共价相互作用 纳米技术 复合材料 分子 氢键 有机化学 生物化学 受体 离子通道
作者
Douglas A. Davis,Andrew Hamilton,Jinglei Yang,Lee D. Cremar,Dara Van. Gough,Stephanie Potisek,Mitchell T. Ong,Paul V. Braun,Todd J. Martı́nez,Scott R. White,Jeffrey S. Moore,Nancy R. Sottos
出处
期刊:Nature [Nature Portfolio]
卷期号:459 (7243): 68-72 被引量:1603
标识
DOI:10.1038/nature07970
摘要

Biology is replete with materials systems that actively and functionally respond to mechanical stimuli and thereby enable physiological processes such as the sense of touch, hearing or the growth of tissue and bone. In contrast, exposing polymers to large stresses tends to result in covalent bond rupture and hence damage or failure. Davis et al. now demonstrate that synthetic materials can be rationally designed to ensure that mechanical stress alters their properties in a useful manner. This is realized by incorporating a chemical group that responds to mechanical stress by changing its colour to red as it undergoes a ring-opening reaction, enabling the team to directly monitor the accumulation of plastic deformation. The principles underpinning this work should enable the development of other force-responsive chemical groups that could impart synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Exposing synthetic materials to large stresses tends to result in simple failure, unlike many biological systems, which respond by enabling physiological processes such as hearing and balance. But by incorporating a chemical group that responds to mechanical stress by changing its colour, it is possible to monitor the accumulation of plastic deformation directly in a synthetic polymer. This principle could be used to design synthetic materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing. Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone1,2,3,4,5,6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed8,9,10,11,12,13,14; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CLY完成签到,获得积分10
刚刚
1秒前
rita_sun1969完成签到,获得积分10
2秒前
研友_8K2QJZ完成签到,获得积分10
2秒前
蝴蝶完成签到 ,获得积分10
3秒前
ARIA完成签到 ,获得积分10
3秒前
大橙子发布了新的文献求助10
6秒前
Bismarck完成签到,获得积分20
7秒前
7秒前
爱笑子默完成签到,获得积分10
8秒前
8秒前
一点完成签到,获得积分10
10秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
10秒前
DezhaoWang完成签到,获得积分10
11秒前
知犯何逆发布了新的文献求助10
12秒前
原本完成签到,获得积分10
12秒前
Bismarck发布了新的文献求助10
13秒前
苗条丹南完成签到 ,获得积分10
15秒前
yu完成签到 ,获得积分10
18秒前
skyleon完成签到,获得积分10
18秒前
无心的天真完成签到 ,获得积分10
19秒前
Engen完成签到,获得积分20
19秒前
20秒前
学术小垃圾完成签到,获得积分10
20秒前
dreamwalk完成签到 ,获得积分10
20秒前
黄淮科研小白龙完成签到 ,获得积分10
21秒前
齐嫒琳完成签到,获得积分10
23秒前
研友_Lav0Qn完成签到,获得积分10
23秒前
大橙子发布了新的文献求助10
24秒前
GreenT完成签到,获得积分10
24秒前
鳄鱼队长完成签到,获得积分10
25秒前
Zengyuan完成签到,获得积分10
25秒前
研友_Lav0Qn发布了新的文献求助10
26秒前
perry4rosa完成签到,获得积分0
26秒前
量子星尘发布了新的文献求助10
27秒前
LIFE2020完成签到 ,获得积分10
27秒前
科研人完成签到,获得积分10
28秒前
飞云完成签到 ,获得积分10
29秒前
满天星辰独览完成签到 ,获得积分10
29秒前
九天完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022