协议(科学)
癌症疼痛
家庭照顾者
医学
护理部
心理学
癌症
替代医学
内科学
病理
作者
Virginia LeBaron,James Hayes,Kate Gordon,Ridwan Alam,Nutta Homdee,Yudel Martinez,Emmanuel Ogunjirin,Tanya Thomas,Randy Jones,Leslie Blackhall,John Lach
摘要
Background An estimated 60%-90% of patients with cancer experience moderate to severe pain. Poorly managed cancer pain negatively affects the quality of life for both patients and their family caregivers and can be a particularly challenging symptom to manage at home. Mobile and wireless technology (“Smart Health”) has significant potential to support patients with cancer and their family caregivers and empower them to safely and effectively manage cancer pain. Objective This study will deploy a package of sensing technologies, known as Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C), and evaluate its feasibility and acceptability among patients with cancer-family caregiver dyads. Our primary aims are to explore the ability of BESI-C to reliably measure and describe variables relevant to cancer pain in the home setting and to better understand the dyadic effect of pain between patients and family caregivers. A secondary objective is to explore how to best share collected data among key stakeholders (patients, caregivers, and health care providers). Methods This descriptive two-year pilot study will include dyads of patients with advanced cancer and their primary family caregivers recruited from an academic medical center outpatient palliative care clinic. Physiological (eg, heart rate, activity) and room-level environmental variables (ambient temperature, humidity, barometric pressure, light, and noise) will be continuously monitored and collected. Behavioral and experiential variables will be actively collected when the caregiver or patient interacts with the custom BESI-C app on their respective smart watch to mark and describe pain events and answer brief, daily ecological momentary assessment surveys. Preliminary analysis will explore the ability of the sensing modalities to infer and detect pain events. Feasibility will be assessed by logistic barriers related to in-home deployment, technical failures related to data capture and fidelity, smart watch wearability issues, and patient recruitment and attrition rates. Acceptability will be measured by dyad perceptions and receptivity to BESI-C through a brief, structured interview and surveys conducted at deployment completion. We will also review summaries of dyad data with participants and health care providers to seek their input regarding data display and content. Results Recruitment began in July 2019 and is in progress. We anticipate the preliminary results to be available by summer 2021. Conclusions BESI-C has significant potential to monitor and predict pain while concurrently enhancing communication, self-efficacy, safety, and quality of life for patients and family caregivers coping with serious illness such as cancer. This exploratory research offers a novel approach to deliver personalized symptom management strategies, improve patient and caregiver outcomes, and reduce disparities in access to pain management and palliative care services. International Registered Report Identifier (IRRID) DERR1-10.2196/16178
科研通智能强力驱动
Strongly Powered by AbleSci AI